Slide # 1

Slide # 1

Vá para o Blogger Editar HTML e encontrar este texto e substituir pela sua descrição do post em destaque... Mais informações »

Slide # 2

Slide # 2

Vá para o Blogger Editar HTML e encontrar este texto e substituir pela sua descrição do post em destaque... Mais informações »

Slide # 3

Slide # 3

Vá para o Blogger Editar HTML e encontrar este texto e substituir pela sua descrição do post em destaque... Mais informações »

Slide # 4

Slide # 4

Far far away, behind the word mountains, far from the countries Vokalia and Consonantia, there live the blind texts Mais informações »

Slide # 5

Slide # 5

Far far away, behind the word mountains, far from the countries Vokalia and Consonantia, there live the blind texts Mais informações »

sexta-feira, 2 de novembro de 2012

curso intensivo de astronomia - você se arrisca a ganhar um notbook ao final do curso??


Astronomia Antiga

As especulações sobre a natureza do Universo devem remontar aos tempos pré-históricos, por isso a astronomia é frequentemente considerada a mais antiga das ciências. Desde a antiguidade, o céu vem sendo usado como mapa, calendário e relógio. Os registros astronômicos mais antigos datam de aproximadamente 3000 a.C. e se devem aos chineses, babilônios, assírios e egípcios. Naquela época, os astros eram estudados com objetivos práticos, como medir a passagem do tempo (fazer calendários) para prever a melhor época para o plantio e a colheita, ou com objetivos mais relacionados à astrologia, como fazer previsões do futuro, já que, não tendo qualquer conhecimento das leis da natureza (física), acreditavam que os deuses do céu tinham o poder da colheita, da chuva e mesmo da vida.
Vários séculos antes de Cristo, os chineses sabiam a duração do ano e usavam um calendário de 365 dias. Deixaram anotações precisas de cometas, meteoros e meteoritos desde 700 a.C. Mais tarde, também observaram as estrelas que agora chamamos de novas.
Os babilônios, assírios e egípcios também sabiam a duração do ano desde épocas pré-cristãs. Em outras partes do mundo, evidências de conhecimentos astronômicos muito antigos foram deixadas na forma de monumentos, como o de Newgrange, construído em 3200 a.C. (no solstício de inverno o sol ilumina o corredor e a câmara central) e Stonehenge, na Inglaterra, que data de 3000 a 1500 a.C. 
Newgrange Newgrange 
Imagens tiradas dos sites: http://www.knowth.com/newgrange.htm (esquerda) e http://www.mythicalireland.com/ancientsites/newgrange/ (direita) 
Stonehenge 
Em Stonehenge, cada pedra pesa em média 26 ton. A avenida principal que parte do centro da monumento aponta para o local no horizonte em que o Sol nasce no dia mais longo do verão (solstício).
Nessa estrutura, algumas pedras estão alinhadas com o nascer e o pôr do Sol no início do verão e do inverno. Os maias, na América Central, também tinham conhecimentos de calendário e de fenômenos celestes, e os polinésios aprenderam a navegar por meio de observações celestes.
ChankilloNas Américas, o observatório mais antigo descoberto é o de Chankillo, no Peru, construído entre 200 e 300 a.C. (Iván Ghezzi e Clive Ruggles, Science, 2007, 315, 1239).
O ápice da ciência antiga se deu na Grécia, de 600 a.C. a 400 d.C., em níveis só ultrapassados no século XVI. Do esforço dos gregos em conhecer a natureza do cosmos, e com o conhecimento herdado dos povos mais antigos, surgiram os primeiros conceitos de Esfera Celeste, uma esfera de material cristalino, incrustada de estrelas, tendo a Terra no centro. Desconhecedores da rotação da Terra, os gregos imaginaram que a esfera celeste girava em torno de um eixo passando pela Terra. Observaram que todas as estrelas giram em torno de um ponto fixo no céu e consideraram esse ponto como uma das extremidades do eixo de rotação da esfera celeste.
Há milhares de anos, os astrônomos sabem que o Sol muda sua posição no céu ao longo do ano, se movendo aproximadamente um grau para leste por dia. O tempo para o Sol completar uma volta na esfera celeste define um ano. O caminho aparente do Sol no céu durante o ano define a eclíptica (assim chamada porque os eclipses ocorrem somente quando a Lua está próxima da eclíptica).
Como a Lua e os planetas percorrem o céu em uma região de dezoito graus centrada na eclíptica, essa região é definida como o Zodíaco, dividida em doze constelações, várias com formas de animais (atualmente as constelações do Zodíaco são treze: Áries, Touro, Gêmeos, Cancer, Leão, Virgem, Escorpião, Ofiúco, Sagitário, Capricórnio, Aquário e Peixes).
As constelações são grupos aparentes de estrelas. Os antigos gregos, e os chineses e egípcios antes deles, já tinham dividido o céu em constelações.

Os astrônomos da Grécia antiga

Tales de Mileto ($ \sim$624 - 546 a.C.) introduziu na Grécia os fundamentos da geometria e da astronomia, trazidos do Egito. Pensava que a Terra era um disco plano em uma vasta extensão de água.
Pitágoras de Samos ($ \sim$572 - 497 a.C.) acreditava na esfericidade da Terra, da Lua e de outros corpos celestes. Achava que os planetas, o Sol, e a Lua eram transportados por esferas separadas da que carregava as estrelas. Foi o primeiro a chamar o céu de cosmos.
Aristóteles de Estagira (384-322 a.C.) explicou que as fases da Lua1 dependem de quanto da parte da face da Lua iluminada pelo Sol está voltada para a Terra. Explicou, também, os eclipses: um eclipse do Sol ocorre quando a Lua passa entre a Terra e o Sol; um eclipse da Lua ocorre quando a Lua entra na sombra da Terra. Aristóteles argumentou a favor da esfericidade da Terra, já que a sombra da Terra na Lua durante um eclipse lunar é sempre arredondada. Afirmava que o Universo é esférico e finito. Aperfeiçoou a teoria das esferas concêntricas de Eudoxus de Cnidus (408-355 a.C.), propondo eu seu livro De Cælo, que "o Universo é finito e esférico, ou não terá centro e não pode se mover." 
Heraclides de Pontus (388-315 a.C.) propôs que a Terra gira diariamente sobre seu próprio eixo, que Vênus e Mercúrio orbitam o Sol, e a existência de epiciclos.
Aristarco de Samos (310-230 a.C.) foi o primeiro a propor a Terra se movia em volta do Sol, antecipando Copérnico em quase 2000 anos. Entre outras coisas, desenvolveu um método para determinar as distâncias relativas do Sol e da Lua à Terra e mediu os tamanhos relativos da Terra, do Sol e da Lua.
EratostenesEratóstenes de Cirênia (276-194 a.C.), bibliotecário e diretor da Biblioteca Alexandrina de 240 a.C. a 194 a.C., foi o primeiro a medir o diâmetro da Terra.
Egito   
Ele notou que, na cidade egípcia de Siena (atualmente chamada de Aswân), no primeiro dia do verão, ao meio-dia, a luz solar atingia o fundo de um grande poço, ou seja, o Sol estava incidindo perpendicularmente à Terra em Siena. Já em Alexandria, situada ao norte de Siena, isso não ocorria; medindo o tamanho da sombra de um bastão na vertical, Eratóstenes observou que em Alexandria, no mesmo dia e hora, o Sol estava aproximadamente sete graus mais ao sul. A distância entre Alexandria e Siena era conhecida como de 5000 estádios. Um estádio era uma unidade de distância usada na Grécia antiga.
  
Um camelo atravessa 100 estádios em um dia, e viaja a cerca de 16 km/dia. Como 7 graus corresponde a 1/50 de um círculo (360 graus), Alexandria deveria estar a 1/50 da circunferência da Terra ao norte de Siena e a circunferência da Terra deveria ser 50×5000 estádios. Infelizmente, não é possível se ter certeza do valor do estádio usado por Eratóstenes, já que os gregos usavam diferentes tipos de estádios. Se ele utilizou um estádio equivalente a 1/6 km, o valor está a 1% do valor correto de 40000 km. O diâmetro da Terra é obtido dividindo-se a circunferência por π.
HiparcosHiparco de Nicéia (c.190-c.120 a.C.), considerado o maior astrônomo da era pré-cristã, construiu um observatório na ilha de Rodes, onde fez observações durante o período de 147 a 127 a.C. Como resultado, ele compilou um catálogo com a posição no céu e a magnitude de 850 estrelas. A magnitude, que especificava o brilho da estrela, era dividida em seis categorias, de 1 a 6, sendo 1 a mais brilhante, e 6 a mais fraca visível a olho nu. Hiparco deduziu corretamente a direção dos pólos celestes, e até mesmo a precessão, que é a variação da direção do eixo de rotação da Terra devido à influência gravitacional da Lua e do Sol, que leva 26000 anos para completar um ciclo.2Para deduzir a precessão, ele comparou as posições de várias estrelas com aquelas catalogadas por Timocharis de Alexandria e Aristyllus de Alexandria 150 anos antes (cerca de 283 a.C. 260 a.C.). Estes eram membros da Escola Alexandrina do século III a.C. e foram os primeiros a medir as distâncias das estrelas de pontos fixos no céu (coordenadas eclípticas). Foram, também, dos primeiros a trabalhar na Biblioteca de Alexandria, que se chamava Museu, fundada pelo rei do Egito, Ptolémée Sôter Ier, em 305 a.C..
Hiparco também deduziu o valor correto de 8/3 para a razão entre o tamanho da sombra da Terra e o tamanho da Lua e também que a Lua estava a 59 vezes o raio da Terra de distância; o valor correto é 60. Ele determinou a duração do ano com uma margem de erro de 6 minutos.
Ptolomeu (85 d.C. - 165 d.C.) (Claudius Ptolemaeus) foi o último astrônomo importante da antiguidade. Não se sabe se ele era egípcio ou romano. Ele compilou uma série de treze volumes sobre astronomia, conhecida como o Almagesto, que é a maior fonte de conhecimento sobre a astronomia na Grécia.
Almagesto 
Reprodução de parte do Almagesto, de Claudius Ptolomaeus, escrito entre 127 e 151 d.C. O termo Almagesto é uma corruptela do árabe Al Majisti; em grego, o livro ficou conhecido como a Mathematike syntaxis(Compilação matemática) ou He Megiste Syntaxis (A maior compilação).1
A contribuição mais importante de Ptolomeu foi uma representação geométrica do sistema solar, geocêntrica, com círculos e epiciclos, que permitia predizer o movimento dos planetas com considerável precisão e que foi usado até o Renascimento, no século XVI.

1 Fonte: História Ilustrada da Ciência - Universidade de Cambridge, Colin A. Ronam, edição brasileira Jorge Zahar Editor, tradução Jorge Enéas Fortes.
A Terra como um grão de pimenta
 Constelações
Volta Astronomia e Astrofísica
© Kepler de Souza Oliveira Filho & Maria de Fátima Oliveira Saraiva 
Modificada em 28 abril 2010

 curso de Trigonometria Esférica

A astronomia esférica, ou astronomia de posição, diz respeito fundamentalmente às direções na qual os astros são vistos, sem se preocupar com sua distância. É conveniente expressar essas direções em termos das posições sobre a superfície de uma esfera - a Esfera Celeste. Essas posições são medidas unicamente em ângulos. Dessa forma, o raio da esfera, que é totalmente arbitrário, não entra nas equações.

Definições básicas:

Se um plano passa pelo centro de uma esfera, ele a dividirá em dois hemisférios idênticos, ao longo de um grande círculo, ou círculo máximo. Qualquer plano que corta a esfera sem passar pelo seu centro a intercepta em um círculo menor ou pequeno.
trianguloQuando dois círculos máximos se interceptam em um ponto, formam entre si um ângulo esférico. SmartA medida de um ângulo esférico é igual à medida do ângulo plano entre as tangentes dos dois arcos que o formam.
Um ângulo esférico também é medido pelo arco esférico correspondente, que é o arco de um círculo máximo contido entre os dois lados do ângulo esférico e distantes 90° de seu vértice. A medida de um arco esférico, por sua vez, é igual ao ângulo que ele subentende no centro da circunferência. 
Triângulos esféricos: Um triângulo esférico não é qualquer figura de três lados sobre a esfera; seus lados devem ser arcos de grandes círculos, ou seja, arcos esféricos.
TEte.gif
Denotamos os ângulos de um triângulo esférico por letras maiúsculas (A,B,C), e os seus lados por letras minúsculas (a,b,c).
Smart
Seja ABC um triângulo esférico como na figura, chamando os lados BC de a, CA de b e AB de c. O lado a mede o ângulo BOC subentendido no centro da esfera O pelo arco de grande círculo BC. Similarmente, b é medido pelo ângulo AOC e c pelo ângulo AOB.
Seja AD a tangente em A do grande círculo AB, e AE a tangente em A do grande círculo AC. Neste caso, a reta OA é perpendicular a AD e AE. Por construção, AD está no plano do grande círculo AB. Portanto, extendendo a reta OB, ela interceptará a tangente AD no ponto D. E OC interceptará a tangente AE em E. O ângulo esférico BAC é definido como o ângulo entre as tangentes, em A, aos grandes círculos AB e AC. Logo, BAC=DAE e chamamos de A.
No triângulo plano OAD, o ângulo OAD é 90° e o ângulo AOD é idêntico ao ângulo AOB, que chamamos de c. Lembrando que
tan c = sen c
cos c
sec c = 1
cos c

AD cos c=OA sen c, logo AD=OA tan c

OD cos c= OA, logo OD=OA sec c
Do triângulo plano OAE podemos deduzir 
AE cos b=OA sen b, logo AE=OA tan b

OE cos b = OA, logo OE=OA sec b
E do triângulo plano DAE temos 
DE2 = AD2 + AE2 - 2 AD·AE cos DAE
ou 
DE2 = OA2[tan2 c + tan2 b - 2 tan c tan b cos A]
Do triângulo plano DOE 
DE2 = OD2 + OE2 - 2 OD·OE cos DOE
Como DOE=BOC=a, 
DE2 = OA2[sec2 c + sec2 b - 2 sec b sec c cos a]
das quais obtemos 
sec2 c + sec2 b - 2 sec b sec c cos a  = tan2 c + tan2 b - 2 tan b tan c cos A
Como a relação de Pitágoras (sen2c+cos2c=1) pode ser escrita como: 
sec2 c=1+tan2 c

sec2 b=1+tan2 b
obtemos 
cos a = cos b cos c + sen b sen c cos A
a lei dos cossenos.
Propriedades dos triângulos esféricos
1) A soma dos ângulos de um triângulo esférico é sempre maior que 180° e menor do que 540° e não é constante, dependendo do triângulo. De fato, o excesso a 180° é diretamente proporcional à área do triângulo.
2) A soma dos lados de um triângulos esférico é maior do que zero e menor do que 180°.
3) Os lados maiores estão opostos aos ângulos maiores no triângulo.
4) A soma de dois lados do triângulo é sempre maior do que o terceiro lado, e a diferença é sempre menor.
5) Cada um dos lados do triângulo é menor do que 180°, e isso se aplica também aos ângulos.
Solução de triângulos esféricos:
Ao contrário da trigonometria plana, não é suficiente conhecer dois ângulos para resolver o triângulo esférico. É sempre necessário conhecer no mínimo três elementos: ou três ângulos, ou três lados, ou dois lados e um ângulo, ou um ângulo e dois lados.
As fórmulas principais para a solução dos triângulos esféricos são:
  • lei dos cossenos para os lados: 
    cos a = cos b cos c + sen b sen c cos A 
    cos b = cos a cos c + sen a sen c cos B 
    cos c = cos a cos b + sen a sen b cos C,
  • lei dos cossenos para os ângulos: 
    cos A = - cos B cos C + sen B sen C cos a 
    cos B = - cos A cos C + sen A sen C cos b 
    cos C = - cos A cos B + sen A sen B cos c
  • lei dos senos: 
    sen a / sen A = sen b / sen B = sen c / sen C
Uma dedução dessas fórmulas pode ser vista, por exemplo, em Astronomia Geodésica. 

O Triângulo de Posição

pz.jpg

Denomina-se triângulo de posição o triângulo situado na esfera celeste que tem por vértices: o astro, o polo elevado e o zênite.
Os lados e ângulos do triângulo de posição são:
  • arco entre o zênite e o polo elevado = 90° - |φ|
  • arco entre o zênite e astro = z
  • arco entre o polo elevado e o astro = 90° - |δ|
  • ângulo com vértice no zênite = A ( no hemisfério norte) ou A - 180° (no hemisfério sul)
  • ângulo com vértice no polo elevado = H
  • ângulo com vértice na estrela
O triângulo de posição é usado para derivar as coordenadas do astro quando conhecida a posição geográfica do lugar, ou determinar as coordenadas geográficas do lugar quando conhecidas as coordenadas do astro. Também permite fazer as transformações de um sistemas de coordenada para outro (determinar coordenadas do sistema equatorial a partir das do sistema horizontal e vice-versa).

Relações entre distância zenital (z), azimute (A), ângulo horário (H), e declinação (δ)

Usando a fórmula dos cossenos no triângulo de posição podemos tirar duas relações entre os sistemas de coordenadas:
Dedução para δ e φ positivos (caso mais geral do hemisfério norte):
pzne.jpg

cos z = cos (90° - φ) cos (90° - δ) + sen (90° - φ) sen (90° - δ) cos H = sen δ sen φ + cos δ cos φ cos H 
sen δ = sen φ cos z + cos φsen z cos A
Invertendo essas relações para isolar H e A temos:

cos H = cos z sec φ sec δ - tan φ tan δ 
cos A = sen δ cosec z sec φ - tan φ cot z 
A fórmula dos senos nos dá: 
- cos δ / sen A = sen z / sen H
Dedução para δ e φ negativos (caso mais geral do hemisfério sul):
pzse.jpg

cos z = cos (90° - |φ|) cos (90° - |δ|) + sen (90° - |φ|) sen (90° - |δ|) cos H 
cos (90° - |δ|)= cos z cos (90° - |φ|) + sen z sen (90° - |δ|) cos (A - 180°)
Lembrando que: 
cos (90° - |φ|) = sen |φ|= - senφ 
cos (90° - |δ|)= sen |δ| = -sen δ 
sen (90° - |φ|) = cos |φ| = cos φ 
cos (A - 180) = - cos A
As equações acima ficam: cos z = sen δ sen φ + cos δ cos φ cos H
e 
sen δ = sen φ cos z + cos φ sen z cos A 

cos A = (sen δ - sen φ cos z)/(cos φ sen z)
que são idênticas às deduzidas para o hemisfério norte.
Analogamente podemos mostrar que essas fórmulas são válidas para qualquer latitude e declinação.

Aplicações:

Uma aplicação prática é determinar o ângulo horário de um astro no instante do nascer ou do ocaso, quando sua distância zenital é 90°, pois ele se encontra no horizonte. Da relação que isola o ângulo horário, obtemos nessa situação:
pzf.gif


cos H = cos 90° sec φ sec δ - tan φ tan δ 

Como cos 90° = 0, no nascer e no ocaso a fórmula se reduz a 
cos H = - tan φ tan δ
Com esta fórmula podemos calcular, por exemplo, quanto tempo o Sol permanece acima do horizonte em um certo lugar e em uma certa data do ano, pois para qualquer astro o tempo de permanência acima do horizonte será 2 vezes o ângulo horário desse astro no momento do nascer ou ocaso.
O azimute do astro no nascer (ou ocaso) também pode ser calculado facilmente usando a fórmula em que temos o azimute em função de δ, z e φ:

cos A = sen δ cosec z sec φ - tan φ cot z 

Como cosec 90° = 1 e cot 90° = 0, no nascer e no ocaso a fórmula se reduz a 
cos A = sen δ sec φ

Exemplo:
Quanto tempo permanecerá o Sol acima do horizonte em Porto Alegre, cuja latitude é 30oS, no dia do Solstício de verão no hemisfério sul, em que a declinação do Sol é de -23o 27'?

Usando a fórmula acima, 
cos H = -tan (-30°) tan (-23° 27′) = -0,2504 → H = 104,5 ° O tempo total que o Sol fica acima do horizonte será 2 H = 209° ≈ 14 h.
Especificamente, em Porto Alegre, o Sol estará acima do horizonte aproximadamente 14 h e 10 min em 21 de dezembro, e 10 h e 10 min em 21 de junho. Note que a diferença de 10 minutos é devido á definição de que o dia começa com a borda superior do Sol no horizonte, e o dia termina com a borda superior do Sol no horizonte, e não o centro do disco solar, como assumido na fórmula acima.
O azimute do Sol no nascer (ou ocaso) tambéa, nessa data, será:

cos A = sen δ sec φ 
cos A = sen (-23° 27') sec (30°) = -0,46
Logo A = 117°(nascer) ou 243° (ocaso) o que significa que nasce entre o leste e o sul e se põe entre o oeste e o sul.

Efeito da precessão dos equinócios na ascenção reta e declinação

Seja ε = 23,5° a obliquidade da eclíptica, e seja Δλ a variação da longitude eclíptica de uma estrela, pela mudança de posição do ponto Áries de γ para γ1, devido à precessão do polo de P para P1.
paral.gif
A variação em declinação será:
Δδ = Δλ sen ε cos α

e a variação em acensão reta será:
Δα = Δλ(cosε + sen ε sen α tan δ).

Determinação da distância angular entre estrelas

A separação angular entre duas estrelas é a distância medida ao longo do círculo máximo passando pelas duas estrelas. Sejam A e B as duas estrelas, e sejam αA, δA, αB e δB as suas coordenadas, ascenção reta e declinação.
Podemos construir um triângulo esférico em que um dos lados seja a separação angular entre elas e os outros dois lados sejam as suas distâncias polares, ou seja, os arcos ao longo dos meridianos das estrelas desde o polo (P) até as estrelas.
Pela fórmula dos cossenos temos:
cos\widehat{AB} = cos\widehat{PA} ...sen\widehat{PB} cos\widehat{APB}
Onde:
\widehat{AB} = distancia polar entre A e B
\widehat{PA} = distancia polar de A = 90^\circ - \delta_A
\widehat{PB}=distancia polar de B = 90^\circ - \delta_B
\widehat{APB}=angulo entre o meridiano de A e o meridiano de B = \alpha_A - \alpha_B
E portanto:
cos\widehat{PA}=sen\delta_A
cos\widehat{PB}=sen\delta_B
sen\widehat{PA}=cos\delta_A
sen\widehat{PB}=cos\delta_B
cos\widehat{APB}=cos(\alpha_A-\alpha_B)}
E finalmente:
cos\widehat{AB}=sen\delta_A ...cos\delta_B cos(\alpha_A-\alpha_B)

Exemplo:

Qual o tamanho da constelação do Cruzeiro do Sul, medido pelo eixo maior da Cruz?
O eixo maior da Cruz é formado pelas estrelas Gacrux ($\alpha = 12h\,31m\,11s$; $\delta = -57^\circ\,07^\prime $) e Acrux ($\alpha = 12h\,26m\,37s$; $\delta = -63^\circ\,06^\prime$)
Chamando D o tamanho do eixo maior da Cruz, e aplicando a equação acima, temos:
cos D= sen\delta_{Gacrux} sen ...a_{Acrux} cos(\alpha_{Gacrux}-\alpha_{Acrux})}
\delta_{Gacrux}= -57^\circ\,07^\prime= -57,11^\circ
\alpha_{Gacrux} = 12h\,31m\,11s = 187,80^\circ
\delta_{Acrux} = -63^\circ\,06^\prime= -63,10^\circ
\alpha_{Acrux} = 12h\,26m\,37s = 186,65^\circ
Substituindo esses valores na equação temos:
cos D= {sen(-57,11^\circ)}sen ... (-63,10^\circ)} cos (187,80^\circ - 186,65^\circ)
Portanto:
cos D= 0,9945 \Rightarrow D = 6^\circ

  Volta Astronomia e Astrofísica
© Kepler de Souza Oliveira Filho & Maria de Fátima Oliveira Saraiva 
Arte: Adriano Pieres 
Modificada em 12 abr 2012

Posições características do Sol


Sol
  • cerca de 21 Março: Sol cruza o equador, indo do Hemisfério Sul para o Hemisfério Norte:
    • alpha_Sol = 0h
    • delta_Sol = 0°
    • o dia e a noite duram 12 hr em toda a Terra (contados a partir do centro do Sol, e não pela definição usual de borda superior do Sol no nascer e borda inferior no pôr-do-sol).
    • nos pólos, 24 hr de crepúsculo.
    • Equinócio (lat: equi=igual+nox=noite) de Outono no HS.
    • Equinócio de Primavera no HN.
  • cerca de 22 Junho: Sol está na máxima declinação norte, incidindo diretamente na região do Trópico de Câncer na Terra:
    • alpha_Sol = 6h
    • delta_Sol = +23,5°
    • o dia mais curto do ano no HS, dia mais longo do ano no HN.
    • no pólo S, Sol sempre abaixo do horizonte.
    • no pólo N, Sol sempre acima do horizonte.
    • Solstício (lat: Sol+sticium=parado) de Inverno no HS.
      Fatima
      Fotos tiradas por Maria de Fátima Oliveira Saraiva entre 21 jun 2003 e 21 mar 2004, ao pôr-do-sol, mostrando que o Sol se põe em pontos diferentes do horizonte no decorrer do ano.
    • Solstício de Verão no HN.
    • dia em Porto Alegre tex2html_wrap_inline65.
  • cerca de 23 Setembro: Sol cruza o equador, indo do Hemisfério Norte para o Hemisfério Sul:
    • alpha_Sol = 12h
    • delta_Sol = 0°
    • o dia e a noite duram 12 hr em toda a Terra.
    • nos pólos, 24 hr de crepúsculo.
    • Equinócio de Primavera no HS.
    • Equinócio de Outono no HN.
  • cerca de 22 Dezembro: Sol está na máxima declinação sul incidindo diretamente na região do Trópico de Capricórnio na Terra:
    • alpha_Sol = 18h
    • delta_Sol = -23,5°
    • o dia mais longo do ano no HS, dia mais curto do ano no HN.
    • no pólo S, Sol sempre acima do horizonte.
    • no pólo N, Sol sempre abaixo do horizonte.
    • Solstício de Verão no HS.
    • Solstício de Inverno no HN.
    • dia em Porto Alegre tex2html_wrap_inline79.
Os dias são cerca de, pois como o ano tem cerca de 6h a mais do que 365 dias, que causa a introdução do ano bissexto, a data varia de um dia. Cerca de 21 de Março, quando o Sol está em $ \alpha$=0h, à meia-noite uma estrela com $ \alpha$=12h passa pelo meridiano e as estrelas visíveis à meia noite em nesta data são as que têm 6 h < \alpha < 18 h, além das circumpolares do local.
A posição do Sol é importante até os dias de hoje, já que, além de orientação geográfica, se voce quiser economizar energia, deve construir sua edificação, no hemisfério sul, de modo que as janelas estejam direcionadas para o nordeste ou noroeste, para que a luz do Sol no inverno incida sobre elas, aquecendo o ambiente, pela manhã ou pela tarde. Na direção sudeste e sudoeste, devem se plantar árvores, para que façam sombras sobres as janelas no verão. Da mesma maneira, os telhados devem, em princípio, ser inclinados para o norte, para aquecer durante o inverno.
A ascensão reta do Sol médio (o Sol médio se move com velocidade constante durante o ano, enquanto o Sol real varia de velocidade por causa da órbita elíptica da Terra em torno do Sol) é dada aproximadamente por
αSol(data)=(3m56,5s/dia)[data - (21 mar)]
para data em dias, assumindo que o Sol médio cruza o equador à 0h do dia 21 de março de cada ano, o que não é estritamente correto por que o ano tropical não é exatamente 365 dias, mas a introdução dos anos bissextos corrigem esta discrepância a cada 4 anos. A ascensão reta que cruza o meridiano de um observador à zero hora de uma certa data será αSol(data)+12h.
© Kepler de Souza Oliveira Filho & Maria de Fátima Oliveira Saraiva 
Modificada em 30 mar 2011

Movimento Anual do Sol e as Estações do Ano

Devido ao movimento de translação da Terra em torno do Sol, o Sol aparentemente se move entre as estrelas, ao longo do ano, descrevendo uma trajetória na esfera celeste chamada Eclíptica. A Eclíptica é um círculo máximo que tem um inclinação de 23°27′ em relação ao Equador Celeste. É esta inclinação que causa as Estações do ano.
Estacoes
Uma observação simples que permite "ver" o movimento do Sol durante o ano é através do gnômon. Um gnômon nada mais é do que uma haste vertical fincada ao solo. Durante o dia, a haste, ao ser iluminada pelo Sol, forma uma sombra cujo tamanho depende da hora do dia e da época do ano. A direção da sombra ao meio-dia real local (isto é, o meio-dia em tempo solar verdadeiro) nos dá a direção Norte-Sul. Ao longo de um dia, a sombra é máxima no nascer e no ocaso do Sol, e é mínima ao meio-dia. Ao longo de um ano (à mesma hora do dia), a sombra é máxima no solstício de inverno, e mínima no solstício de verão. A bissetriz entre as direções dos raios solares nos dois solstício define o tamanho da sombra correspondente aos equinócios, quando o Sol está sobre o equador. Foi observando a variação do tamanho da sombra do gnômon ao longo do ano que os antigos determinaram a duração do ano das estações, ou ano tropical.

Estações em diferentes latitudes

Embora a órbita da Terra em torno do Sol seja uma elipse, e não um círculo, a distância da Terra ao Sol varia somente 3%, sendo que a Terra está mais próxima do Sol entre 4 a 7 de janeiro de cada ano, dependendo do ano bissexto. Mas é fácil lembrar que o hemisfério norte da Terra também está mais próximo do Sol em janeiro e é inverno lá,enquanto é verão no hemisfério sul. O afélio ocorre entre 4 e 7 de julho de cada ano.
O que causa as estações é o fato de a Terra orbitar o Sol com o eixo de rotação inclinado, e não perpendicular ao plano orbital. O ângulo entre o plano do equador e o plano orbital da Terra é chamado obliquidade e vale 23°27′. Também podemos definir a obliquidade como a inclinação do eixo de rotação da Terra em relação ao eixo perpendicular à eclíptica (plano orbital da Terra). Devido a essa inclinação, à medida que a Terra orbita em torno do Sol, os raios solares incidem mais diretamente em um hemisfério ou outro, proporcionando mais horas com luz durante o dia a um hemisfério ou outro e, portanto, aquecendo mais um hemisfério ou outro.
No Equador todas as estações são muito parecidas: todos os dias do ano o Sol fica 12 horas acima do horizonte e 12 horas abaixo do horizonte; a única diferença é a máxima altura que ele atinge. Nos equinócios o Sol faz a passagem meridiana pelo zênite, atingindo a altura de 90° no meio-dia verdadeiro. Nas outras datas do ano o Sol passa o meridiano ao norte do zênite, entre os equinócios de março e de setembro, ou ao sul do zênite, entre os equinócios de setembro e de março. As menores alturas do Sol na passagem meridiana são de 66,5° e acontecem nas datas dos solstícios. Portanto a altura do Sol ao meio-dia no Equador não muda muito ao longo do ano e, conseqüentemente, nessa região não existe muita diferença entre inverno, verão, primavera e outono.
À medida que nos afastamos do Equador, as estações ficam mais acentuadas. A diferenciação entre elas torna-se máxima nos polos.
verao verao1
movsol meridiano
Na Terra, a região entre latitudes -23,5° (trópico de Capricórnio) e +23,5° (trópico de Câncer) é chamada de região tropical. Nessa região, o Sol passa pelo zênite duas vezes por ano, com exceção dos dois trópicos, onde passa uma única vez. Fora dessa região o Sol nunca passa pelo zênite. As linhas de latitudes +66,5° e -66,5° são chamadas Círculos Polares, norte ou sul. Para latitudes mais ao norte do Círculo Polar Norte, ou mais ao sul do Círculo Polar Sul, o Sol permanece 24 horas acima do horizonte no verão e 24 horas abaixo do horizonte no inverno.
© Kepler de Souza Oliveira Filho &Maria de Fátima Oliveira Saraiva 
Modificada em 28 mar 2012

Medidas de Tempo

A medida do tempo se baseia no movimento de rotação da Terra, que provoca a rotação aparente da esfera celeste. Em 04/09/2012, o nascer do Sol em Porto Alegre ocorre às 6:36 e o pôr do Sol ocorre às 18:11, Hora de Brasília.
    Equador
  • Dia Sideral: é o intervalo de tempo decorrido entre duas passagens sucessivas do ponto γ (Vernal) (cruzamento do equador e eclíptica, onde está o Sol próximo de 21 de março), pelo meridiano do lugar (Sul-Zênite-Norte), isto é, duas culminações superiores consecutivas do ponto Vernal.

    Tempo Solar

    O tempo solar toma como referência o Sol.
    1 grau/dia
  • Dia Solar: é o intervalo de tempo decorrido entre duas passagens sucessivas do Sol pelo meridiano do lugar - duas culminações superiores consecutivas do Sol. É 3m56s mais longo do que o dia sideral, pois o Sol está se deslocando em sentido contrário ao movimento diurno, isto é, de oeste para leste. Essa diferença é devida ao movimento de translação da Terra em torno do Sol, de aproximadamente 1 grau (4 minutos) por dia (360°/ano=360°/(365,25 dias)=0,9856°/dia).Como a órbita da Terra em torno do Sol é elíptica, a velocidade de translação da Terra em torno do Sol não é constante. Pela conservação do momentum angular, expresso pela Segunda Lei de Kepler, a lei da áreas, a velocidade é maior quando a Terra está mais próxima do Sol, isto é, no periélio, causando uma variação diária na duração do dia Solar de 1° 6' (4m27s) em dezembro-janeiro, e de 53' (3m35s) em junho, quando a Terra está mais afastada do Sol, isto é, no afélio.
Tempo solar verdadeiro: é o ângulo horário (ângulo medido sobre o equador, desde o meridiano local até o meridiano do astro) do centro do Sol. Como o ângulo horário é diferente para diferentes locais, já que o zênite muda, o tempo solar verdadeiro muda de local para local.
Tempo solar médio: é o ângulo horário do centro do sol médio. O sol médio é um sol fictício, que se move ao longo do Equador celeste (ao passo que o Sol verdadeiro se move ao longo da Eclíptica), com velocidade angular constante, de modo que os dias solares médios são iguais entre si (ao passo que os dias solares verdadeiros não são iguais entre si porque o movimento do Sol na eclíptica não tem velocidade angular constante). Mas o movimento do Sol na eclíptica é anualmente periódico, assim o ano solar médio é igual ao ano solar verdadeiro.
Equacao do Tempo
Equação do Tempo: é a diferença entre o Tempo Solar Verdadeiro e o Tempo Solar Médio. ET=HSol verdadeiro-HSol médioSol verdadeiroSol médio. Seu maior valor positivo é cerca de 16 minutos e seu maior valor negativo é cerca de 14 minutos. Esta é a diferença entre o meio dia verdadeiro (passagem meridiana do Sol), e o meio dia do Sol médio. Quando se faz a determinação da longitude de um local pela medida da passagem meridiana do Sol, se não corrigirmos a hora local do centro do meridiano pela equação do tempo, poderemos introduzir um erro de até 4 graus na longitude.
Tempo civil (Tc): é o tempo solar médio acrescido de 12 hr, isto é, usa como origem do dia o instante em que o sol médio passa pelo meridiano inferior do lugar. A razão da instituição do tempo civil é não mudar a data durante as horas de maior atividade da humanidade nos ramos financeiros, comerciais e industriais, o que acarretaria inúmeros problemas de ordem prática.
Linha MeridianaTempo universal (TU): é o tempo civil (tempo solar médio+12 hr) de Greenwich, na Inglaterra, definido como ponto zero de longitude geográfica na Conferência Internacional Meridiana, realizada em Washington em outubro de 1884. Lá está a Linha Meridiana, no Royal Observatory, Greenwich.
Note que os tempos acima são locais, dependendo do ângulo horário do Sol, verdadeiro ou médio. Portanto a Hora Solar Média em Porto Alegre é diferente da Hora Solar Média em Brasília, já que os meridianos locais são diferentes. Se medirmos diretamente a hora solar, esta vai provavelmente ser diferente daquela que o relógio marca, pois não usamos o tempo local na nossa vida diária, mas a Hora Legal, o tempo do fuso horário mais próximo.Fusos
De acordo com a definição de tempo civil, lugares de longitudes diferentes têm horas diferentes, porque têm meridianos diferentes. Inicialmente, cada nação tinha a sua hora, que era a hora do seu meridiano principal. Por exemplo, a Inglaterra tinha a hora do meridiano que passava por Greenwich, a França tinha a hora do meridiano que passava por Paris.
Como as diferença de longitudes entre os meridianos escolhidos não eram horas e minutos exatos, as mudança de horas de um país para outro implicavam cálculos incômodos, o que não era prático. Para evitar isso adotou-se o convênio internacional dos fusos horários.
Cada fuso compreende tex2html_wrap_inline58 (= 1 h). Fuso zero é aquele cujo meridiano central passa por Greenwich. Os fusos variam de 0h a +12h para leste de Greenwich e de 0h a -12h para oeste de Greenwich. Todos os lugares de um determinado fuso têm a hora do meridiano central do fuso.
Hora legal: é a hora civil do meridiano central do fuso: HL=TU+fuso
Fusos
Fusos no Brasil: o Brasil abrange três fusos (Lei 11 662 de 24.04.2008):
  • -2h: arquipélago de Fernando de Noronha e outras ilhas distantes;
  • -3h: estados do litoral, Amapá, Minas, Goiás, Tocantins e Pará (a leste do Rio Xingu)
  • -4h: Amazonas, Mato Grosso, Mato Grosso do Sul, Rondônia, Roraima, Pará (a oeste do Rio Xingu) e Acre.
Como cada fuso correponde a diferença de longitude de Δλ=15°, o fuso de -3h está centrado em uma longitude geográfica de -3h×15°/h=-45°, a oeste de Greenwich. Como Porto Alegre tem longitude λ=-51°, existe uma diferença Δλ = 51° - 45° = 6°. Esta diferença positiva em longitude significa que Porto Alegre está a oeste do meridiano central do fuso -3 h. Assim, a hora do sol médio (HSM) em Porto Alegre está atrasada com relação à hora legal (HL) por
Hora Sol Médio = HL - 6° = HL - 24m
Por exemplo, se em um dado instante a hora legal no fuso de -3h é HL=12h, sabemos que a hora solar média no meridiano de Porto Alegre é HSMPoA= 11h 36m.
A hora solar e hora a sideral são sistemas de medida de tempo baseados no movimento de rotação da Terra. A rotacão da Terra sofre irregularidades, algumas previsíveis, outras não. O movimento do polo afeta a longitude de qualquer ponto na superfície da Terra, o que se reflete no ângulo horário do Sol e do ponto vernal.
Equador
Além disso, a velocidade angular de rotação da Terra não é uniforme. Há uma lenta desaceleração da rotação, causada pelo atrito da massa líquida do planeta, que tende a se alinhar com a Lua e o Sol devido às marés, com a parte sólida, além do atrito do núcleo sólido com o manto. Há também variações sazonais, provavelmente causadas por mudanças meteorológicas, na rotação do planeta. Finalmente há componentes irregulares na variação da rotação, ainda não totalmente explicados.
Devido às irregularidades na rotação da Terra, são definidos 3 tipos de sistemas de tempo universal:
TU0: baseado apenas no valor do ângulo horário do Sol Médio medido por um observador no meridiano de Greenwich.
TU1: TU0 corrigido para o efeito de variação da longitude, Δλ, causado pelo deslocamento do polo.
TU1 = TU0 + Δλ
TU2: TU1 corrigido para as variações sazonais na velocidade angular de rotação da Terra, ω:
TU2 = TU1 + Δω(°)/15°/h
Tempo Atômico Internacional (TAI): O tempo atômico é muito mais regular do que a rotação da Terra. Desde 1967, quando um segundo foi definido como 9 192 631 770 vezes o período da luz emitida pelo isótopo 133 do Césio, no nível fundamental, passando do nível hiperfino F=4 para F=3, se usa o TAI, dado por uma média de vários relógios atômicos muito precisos. Hoje em dia se usa a transição maser do hidrogênio, ainda mais precisa. O TAI varia menos de 1 segundo em 3 milhões de anos. Mas existem objetos astronômicos ainda mais estáveis, como a estrela anã branca G 117-B15A, cujo período de pulsação ótica varia menos de 1 segundo em 10 milhões de anos (Kepler et al. 2005, "Measuring the Evolution of the Most Stable Optical Clock G 117-B15A", Astrophysical Journal, 634, 1311-1318), e pulsares em rádio ainda mais estáveis. Mas o tempo atômico não está sincronizado com a posição do Sol no céu. Assim, a discrepância entre o tempo atômico e o tempo rotacional tende a aumentar. Para evitar uma desvinculação muito grande entre o tempo atômico e o solar, defini-se o tempo universal coordenado (TUC). O TUC é um sistema de tempo atômico que sofre correções periódicas, através dos segundos intercalados, para manter-se em consonância com o tempo universal, mais especificamente o TU1.
Existem ainda outros sistemas de tempo. O tempo das efemérides, atualmente chamado de Tempo Dinâmico Terrestre, é a variável independente que entra nas expressões que nos dão a posição de planetas e de seus satélites em algum sistema de coordenadas, como o sistema de coordenadas eclípticas.

Calendário

Desde a Antiguidade foram encontradas dificuldades para a criação de um calendário, pois o ano (duração da revolução aparente do Sol em torno da Terra) não é um múltiplo exato da duração do dia ou da duração do mês. Os Babilonios, Egípcios, Gregos e Maias já tinham determinado essa diferença.
É importante distinguir dois tipos de anos:
Ano sideral: é o período de revolução da Terra em torno do Sol com relação às estrelas. Seu comprimento é de 365,2564 dias solares médios, ou 365d 6h 9m 10s.
Ano tropical: é o período de revolução da Terra em torno do Sol com relação ao Equinócio Vernal, isto é, com relação ao início da estações. Seu comprimento é 365,2422 dias solares médios, ou 365d 5h 48m 46s. Devido ao movimento de precessão da Terra, isto é, do deslocamento lento dos polos em relação às estrelas, o ano tropical é levemente menor do que o ano sideral. O calendário se baseia no ano tropical.Precessão e nutação são componentes da resposta global da Terra, oblata, elástica e em rotação, aos torques gravitacionais da Lua, Sol e demais planetas.
Os egípcios, cujos trabalhos no calendário remontam a 4 milênios antes de Cristo, utilizaram inicialmente um ano de 360 dias começando com a enchente anual do Nilo, que acontecia quando a estrela Sírius, a mais brilhante estrela do céu, nascia logo antes do nascer do Sol. Mais tarde, quando o desvio na posição do Sol se tornou notável, 5 dias foram adicionados. Mas ainda havia um lento deslocamento, que somava 1 dia a cada 4 anos. Então os egípcios deduziram que o comprimento do ano era de 365,25 dias. Já no ano 238 a.C., o rei (faraó) Ptolomeu III, o Euergetes, que reinou o Egito de 246 a 222 a.C., ordenou que um dia extra fosse adicionado ao calendário a cada 4 anos, como no ano bissexto atual.
Nosso calendário atual está baseado no antigo calendário romano, que era lunar. Como o período sinódico da Lua é de 29,5 dias, um mês tinha 29 dias e o outro 30 dias, o que totalizava 354 dias. Então a cada três anos era introduzido um mês a mais para completar os 365,25 dias por ano em média. Os anos no calendário romano eram chamados de a.u.c. (ab urbe condita), "a partir da fundação da cidade de Roma". Neste sistema, o dia 11 de janeiro de 2000 marcou o ano novo do 2753 a.u.c. A maneira de introduzir o 13o mês se tornou muito irregular, de forma que no ano 46 a.C. Júlio César (Gaius Julius Cæsar, 102-44 a.C.), orientado pelo astrônomo alexandrino Sosígenes (90-? a.C.), reformou o calendário, introduzindo o Calendário Juliano, de doze meses, no qual a cada três anos de 365 dias seguia outro de 366 dias (ano bissexto). Assim, o ano juliano tem em média 365,25 dias. Para acertar o calendário com a primavera, foram adicionados 67 dias àquele ano e o primeiro dia do mês de março de 45 a.C., no calendário romano, foi chamado de 1 de janeiro no calendário Juliano. Este ano é chamado de Ano da Confusão. O ano juliano vigorou por 1600 anos.
Em 325 d.C., o concílio de Nicéia (atual Iznik, Turquia), convocado pelo imperador romano Constantino I [Gaius Flavius Valerius Aurelius Constantinus (ca.280-337)] fixou a data da Páscoa como sendo o primeiro domingo depois da Lua Cheia que ocorre em ou após o equinócio Vernal, fixado em 21 de março. Entretanto, a data da lua cheia não é a real, mas a definida nas Tabelas Eclesiásticas. A Quarta-Feira de Cinzas ocorre 46 dias antes da Páscoa e, portanto, a Terça-Feira de Carnaval ocorre 47 dias antes da Páscoa.
A data da Páscoa, no calendário Gregoriano:
  • 23 de março de 2008
  • 12 de abril de 2009
  • 4 de abril de 2010
  • 24 de abril de 2011
  • 8 de abril de 2012
  • 31 de março de 2013
  • 20 de abril de 2014
  • 5 de abril de 2015
  • 27 de março de 2016
  • 16 de abril de 2017
  • 1 de abril de 2018
  • 21 de abril de 2019
  • 12 de abril de 2020
O sistema de numeramento dos anos d.C. (depois de Cristo) foi instituido no ano 527 d.C. pelo abade romano Dionysius Exiguus (c.470-544), que estimou que o nascimento de Cristo (se este é uma figura histórica) ocorrera em 25 de dezembro de 754 a.u.c., que ele designou como 1 d.C. Em 1613 Johannes Kepler (1571-1630) publicou o primeiro trabalho sobre a cronologia e o ano do nascimento de Jesus. Neste trabalho Kepler demonstrou que o calendário Cristão estava em erro por cinco anos, e que Jesus tinha nascido em 4 a.C., uma conclusão atualmente aceita. O argumento é que Dionysius Exiguus assumiu que Cristo nascera no ano 754 da cidade de Roma, correspondente ao ano 46 Juliano, definindo como o ano um da era cristã. Entretanto vários historiadores afirmavam que o rei Herodes, que faleceu depois do nascimento de Cristo, morreu no ano 42 Juliano. Deste modo, o nascimento ocorrera em 41 Juliano, 5 anos antes do que Dionysius assumira. Como houve uma conjunção de Júpiter e Saturno em 17 de setembro de 7 a.C., que pode ter sido tomada como a estrela guia, sugerindo que o nascimento pode ter ocorrido nesta data. Outros historiadores propõem que houve um erro na determinação da data de falecimento de Herodes, que teria ocorridodepois do ano 42 Juliano e, consequentemente, o nascimento de Jesus também teria ocorrido um pouco mais tarde, entre os anos 3 e 2 da era cristã. Nessa época ocorreram diversas conjunções envolvendo Júpiter, começando com uma conjunção com Vênus em agosto de 3 a.C., seguida por três conjunções seguidas com Regulus, e terminando com mais uma conjunção muito próxima com Vênus, em julho de 2 a.C. Essa série de eventos teria chamado a atenção dos reis magos que teriam, então passado a seguir na direção de Júpiter. Segundo essa interpretação, portanto, Júpiter teria sido a estrela guia, ou estrela de Belém.
PapaPapa Gregório XIII
Em 1582, durante o papado de Gregório XIII (Ugo Boncampagni, 1502-1585), o equinócio vernal já estava ocorrendo em 11 de março, antecipando muito a data da Páscoa. Daí foi deduzido que o ano era mais curto do que 365,25 dias (hoje sabemos que tem 365,242199 dias). Essa diferença atingia 1 dia a cada 128 anos, sendo que nesse ano já completava 10 dias. O papa então introduziu nova reforma no calendário, sob orientação do astrônomo jesuíta alemão Christopher Clavius (1538-1612), para regular a data da Páscoa, instituindo o Calendário Gregoriano.
As reformas, publicadas na bula papal Inter Gravissimas em 24.02.1582, foram:
  1. tirou 10 dias do ano de 1582, para recolocar o Equinócio Vernal em 21 de março. Assim, o dia seguinte a 4 de outubro de 1582 (quinta-feira) passou a ter a data de 15 de outubro de 1582 (sexta-feira).
  2. introduziu a regra de que anos múltiplos de 100 não são bissextos a menos que sejam também múltiplos de 400. Portanto o ano 2000 é bissexto.
  3. o dia extra do ano bissexto passou de 25 de fevereiro (sexto dia antes de março, portanto bissexto) para o dia 28 de fevereiro e o ano novo passou a ser o 1o de janeiro.
Estas modificações foram adotadas imediatamente nos países católicos, como Portugal e, portanto, no Brasil, na Itália, Espanha, França, Polônia e Hungria, mas somente em setembro de 1752 na Inglaterra e Estados Unidos, onde o 2 de setembro de 1752 foi seguido do 14 de setembro de 1752, e somente com a Revolução Bolchevista na Rússia, quando o dia seguinte ao 31 de janeiro de 1918 passou a ser o 14 de fevereiro de 1918. Cada país, e mesmo cada cidade na Alemanha, adotou o Calendário Gregoriano em época diferente.
O ano do Calendário Gregoriano tem 365,2425 dias solares médios, ao passo que o ano tropical tem aproximadamente 365,2422 dias solares médios. A diferença de 0,0003 dias corresponde a 26 segundos (1 dia a cada 3300 anos). Assim:

displaymath62
ou

displaymath64
Data Juliana: A data Juliana é utilizada principalmente pelos astrônomos como uma maneira de calcular facilmente o intervalo de tempo decorrido entre diferentes eventos astronômicos. A facilidade vem do fato de que não existem meses e anos na data juliana; ela consta apenas do número de dias solares médios decorridos desde o início da era Juliana, em 1 de janeiro de 4713 a.C.. O dia juliano muda sempre às 12 h TU.
Ano Bissexto - origem da palavra: No antigo calendário romano, o primeiro dia do mês se chamava calendas, e cada dia do mês anterior se contava retroativamente. Em 46 a.C., Júlio César determinou que o sexto dia antes das calendas de março deveria ser repetido uma vez em cada quatro anos, e era chamado ante diem bis sextum Kalendas Martias ou simplesmente bissextum. Daí o nome bissexto.
Século XXI: O século XXI (terceiro milênio) começou no dia 01 de janeiro de 2001, porque não houve ano zero e, portanto, o século I começou no ano 1. Mas há uma disputa com o ano 1 a.C., que sendo bissexto, seria corresponte ao ano zero, no calendário instituído por Dionysius Exiguous (Explanatory Supplent of the Astronomical Ephemeris).
Calendário Judáico: tem como início o ano de 3761 a.C., a data de criação do mundo de acordo com o "Velho Testamento". Como a idade medida da Terra é de 4,5 bilhões de anos, o conceito de criação é somente religioso. É um calendário lunisolar, com meses lunares de 29 dias alternando-se com meses de 30 dias, com um mês adicional intercalado a cada 3 anos, baseado num ciclo de 19 anos. As datas no calendário hebreu são designadas AM (do latin Anno Mundi).
Calendário Muçulmano: é contado a partir de 622 d.C., do dia depois da Heriga, ou dia em que Maomé saiu de Meca para Medina. Consiste de 12 meses lunares.
Calendário Chinês: é contado a partir de 2637 a.C., é um calendário lunisolar, com meses lunares de 29 dias alternando-se com meses de 30 dias, com um mês adicional intercalado a cada 3 anos. Os nomes formais dos anos têm um ciclo de 60 anos. Em 23 de janeiro de 2012 (lua nova) iniciou-se o ano do Dragão, 4710. Desde 1912 a China também usa o Calendário Gregoriano.

Era

Uma era zodiacal, como a Era de Aquário, na perpectiva astronômica, é definida como o período em anos em que o Sol, no dia do equinócio vernal (˜ 21 de março), nasce naquela constelação, Áries, Peixes ou Aquário, por exemplo.
Sol em 21 mar 07
Com o passar dos séculos, a posição do Sol no equinócio vernal, vista por um observador na Terra, parece mudar devido ao movimento de Precessão dos Equinócios, descoberto por Hiparcos e explicado teóricamente por Newton como devido ao torque causado pelo Sol no bojo da Terra e à conservação do momentum angular.
A área de uma constelação é definida por uma borda imaginária que a separa no céu das outras constelações. Em 1929, a União Astronômica Internacional definiu as bordas das 88 constelações oficiais, publicadas em 1930 em um trabalho entitulado Délimitation Scientifique des Constellations, por Eugène Delporte, Cambridge University Press, Cambridge. A borda estabelecida entre Peixes e Aquário coloca o início da Era de Aquário em 2602 d.C..

A equação do tempo, definida como o ângulo horário do Sol, menos o ângulo horário do sol médio, pode ser expressa como: 
displaymath28
onde tex2html_wrap_inline34 é a longitude eclíptica do Sol e tex2html_wrap_inline36 a longitude do Sol médio. Esta equação divide o problema em dois termos, o primeiro chamado de redução ao equador, leva em conta que o Sol real se move na eclíptica enquanto o Sol médio, fictício, se move no equador, e o segundo de equação do centro, que leva em conta a elipticidade da órbita.
A equação do tempo pode ser expressa em uma série envolvendo somente a longitude do Sol médio: 
displaymath29

displaymath30
A quantidade tabulada no Astronomical Ephemeris não é diretamente E, mas a efeméride do Sol no trânsito. Esta efeméride é o instante da passagem do Sol pelo meridiano da efeméride, e é 12 hr menos a equação do tempo naquele instante.
Albert Einstein (1879-1955) mostrou, no começo do seculo XX, que o tempo é alterado pela força gravitacional. Um corpo que está mais próximo da superfície da Terra sofre maior ação da gravidade do que um satélite que está a centenas de quilômetros de distância da superfície do planeta. De acordo com a Teoria da Relatividade Geral, por conta da força da gravidade, um corpo com massa gera uma curvatura na estrutura do espaco-tempo. Como o espaço e o tempo estão interligados, essa curvatura altera o ritmo de passagem do tempo. Em 2000, a União Astronômica Internacional definiu dois sistemas de referência, o Sistema de Referência Celestial Baricêntrico, centrado no baricentro do sistema solar, e o Geocêntrico, centrado na Terra. Na relatividade geral, tempo coordenado é uma das quatro variáveis independentes dos eventos no espaço-tempo. Nestes sistemas, os tempos coordenados são o Tempo Coordenado Baricêntrico e o Tempo Coordenado Geocêntrico. O sistema baricêntrico deve ser usado tanto para descrever movimentos dentro do sistema solar quanto extrassolares. O sistema geocêntrico deve ser usado somente para movimentos próximos à Terra, como de satélites artificias.
TCG=TCB - \frac{1}{c^2}\int_{t_0}^{\mathrm{TCB}} [\frac{v_T^2}{2}+U_\mathrm{ext}({\bf x_T})]dt -
\frac{{\bf v_T}}{c^2}\cdot ({\bf x - x}_T) + \ldots
onde c é a velocidade da luz, vT e xT são os vetores velocidade e posição da Terra em relação ao baricentro do sistema solar e Uext é o potencial de todos os corpos do sistema solar externos ao Sol e Terra.
Em relação a uma escala de tempo baseada no segundo medido pelo TAI do Sistema Internacional na superfície (geóide rotacional) da Terra, o Tempo Coordenado Baricêntrico se move 1,55×10-8 mais rápido, e o Geocêtrico 6,97×10-10 mais rápido. Se os relógios atômicos dos satélites utilizados no GPS não fossem calibrados de acordo com os resultados da relatividade geral, haveria um erro acumulativo de cerca de 15 km por dia nas posições.
O tempo civil coordenado chama-se Tempo Coordenado Universal, UTC, e difere do TAI por um número de segundos intercalados (leap seconds), que de 1 janeiro de 2009 a 30 de junho de 2012 vale 34s (UTC=TAI-34s), e 35s a partir de 1 de julho de 2012. O número de segundos intercalados mede o freamento da Terra em relação ao tempo atômico, desde 1972. O Tempo Terrestre, associado ao Tempo Coordenado Geocêntrico, TT=TAI+32,184s, ou seja TT=UTC+66.184s até 30 de junho de 2012. A época padrão atual para as coordenadas astrométricas, referida como J2000, é 1 de janeiro de 2000, às 12h TT (JD=2451545.0 TT), no geocentro.
Coordenadas de Porto Alegre: Latitude 30°3′12′′ e Longitude 51°7′48′′
© Kepler de Souza Oliveira Filho & Maria de Fátima Oliveira Saraiva 
Modificada em 3 set 2012

Lua

Lua lua
A distância Terra-Lua foi medida por radar e por laser, como na figura abaixo em que um laser é disparado até um dos espelhos (prismas retro-refletores, que refletem a luz na mesma direção da luz incidente) colocados pelos astronautas na Lua (missões Apolo 11, 14 e 15),
Laser Prismas refletivos Espelho da Apolo 11 Espelho da Apolo 11
e o tempo de ida e vinda do laser é medido. Seu valor médio é de 384 403 km e varia de 356 800 km a 406 400 km. A excentricidade da órbita da Lua é de 0,0549. Cada prisma tem 3,8 cm, e os espelhos deixados pela Apolo 11 e 14 têm 10 prismas cada, enquanto o deixado pela Apolo 15 tem 300. Outro refletor francês também foi instalado pela missão russa não tripulada Lunakhod 2. Ao chegar na superfície da Lua, o feixe tem aproximadamente 6,5 km. O sinal de retorno é muito fraco para ser visto a olho nu, mas em boas condições chega a 1 fótons por segundo. 
libracaoA Lua tem três movimentos principais: rotação em torno de seu próprio eixo, revolução em torno da Terra e translação em torno do Sol junto com a Terra, mas existe também um pequeno movimento de libração. 
O plano orbital da Lua em torno da Terra tem uma inclinação de 5°9' em relação à eclíptica, que está inclinada 23,5° em relação ao equador. Portanto, em relação ao equador da Terra, a órbita da Lua tem uma inclinação que varia de 18,4° (23,5° - 5,15°) a 28,7° (23,5° + 5,15°). 
PlanoApesar do ângulo do plano da órbita em relação à eclíptica permanecer aproximadamente constante, o plano orbital não é fixo, movendo-se de maneira tal que seu eixo descreve um círculo completo em torno do eixo da eclíptica num período de 18,6 anos. Esta rotação para oeste do plano orbital da Lua ocorre pela força diferencial exercida pelo bojo equatorial da Terra, causado pela rotação da Terra.
Em relação ao equador da Lua, o seu plano orbital tem uma inclinação de menos do que 1°. 
ComparacaoO diâmetro aparente médio da Lua é de 31' 5" (0,518°), de onde se deduz que o diâmetro da Lua é de 3476 km (D=384 000 km × sen 0,518); a massa da Lua é de 1/81 da massa da Terra. 
Clementina Clementina 
Imagem do lado oculto (esquerda) e iluminado (direita) da Lua, fotografada pela espaçonave Clementine, da NASA.
Devido à rotação sincronizada da Lua, a face da Lua que não podemos ver chama-se face oculta, que só pode ser fotograda pelos astronautas ou naves em órbita da Lua.
Jack B. Hartung publicou um artigo em 1979, na Conference on The Lunar Highlands Crust (Lunar and Planetary Institute Conferences, 394, 45), comentando que o centro de massa da Lua está deslocado cerca de 2 km mais perto da Terra do que o centro da Lua, causado por efeitos assimétricos quando a Lua estava mais próxima da Terra, no passado distante.
© Kepler de Souza Oliveira Filho & Maria de Fátima Oliveira Saraiva 
Modificada em 11 abr 2012

FASES DA LUA

Fase da Lua hoje Fase como vista por um observador voltado para o sul, tendo o leste à sua esquerda e o oeste à sua direita. 
Set 12Set 2012

À medida que a Lua viaja ao redor da Terra ao longo do mês, ela passa por um ciclo de fases, durante o qual sua forma parece variar gradualmente. O ciclo completo dura aproximadamente 29,5 dias. Esse fenômeno é bem compreendido desde a Antiguidade. Acredita-se que o grego Anaxágoras (˜ 430 a.C.), já conhecia sua causa, e Aristóteles (384 - 322 a.C.) registrou a explicação correta do fenômeno: as fases da Lua resultam do fato de que ela não é um corpo luminoso, e sim um corpo iluminado pela luz do Sol.
Nova
A face iluminada da Lua é aquela que está voltada para o Sol. A fase da lua representa o quanto dessa face iluminada pelo Sol está voltada também para a Terra. Durante metade do ciclo essa porção está aumentando (lua crescente) e durante a outra metade ela está diminuindo (lua minguante). Tradicionalmente apenas as quatro fases mais características do ciclo - Lua Nova, Quarto-Crescente, Lua Cheia e Quarto-Minguante - recebem nomes, mas a porção que vemos iluminada da Lua, que é a sua fase, varia de dia para dia. Por essa razão os astrônomos definem a fase da Lua em termos de número de dias decorridos desde a Lua Nova (de 0 a 29,5) e em termos de fração iluminada da face visível (0% a 100%). Recapitulando, fase da lua representa o quanto da face iluminada pelo Sol está na direção da Terra.
Lua 
A figura acima mostra o sistema Sol-Terra-Lua como seria visto por um observador externo olhando diretamente para o pólo sul da Terra. O círculo externo mostra a Lua em diferentes posições relativas em relação à linha Sol-Terra, assumidas à medida que ela orbita a Terra de oeste para leste (sentido horário para um observador olhando para o pólo sul). O círculo interno mostra as formas aparentes da Lua, em cada situação, para um observador no hemisfério sul da Terra.
As quatro fases principais do ciclo são:
Lua Nova:
  • Lua e Sol, vistos da Terra, estão na mesma direção
  • A Lua nasce tex2html_wrap_inline31 6h e se põe tex2html_wrap_inline31 18h.
A Lua Nova acontece quando a face visível da Lua não recebe luz do Sol, pois os dois astros estão na mesma direção. Nessa fase, a Lua está no céu durante o dia, nascendo e se pondo aproximadamente junto com o Sol. Durante os dias subsequentes, a Lua vai ficando cada vez mais a leste do Sol e, portanto, a face visível vai ficando crescentemente mais iluminada a partir da borda que aponta para o oeste, até que aproximadamente 1 semana depois temos o Quarto-Crescente, com 50% da face iluminada.
Lua Quarto-Crescente:
  • Lua e Sol, vistos da Terra, estão separados de 90°.
  • a Lua está a leste do Sol e, portanto, sua parte iluminada tem a convexidade para o oeste.
  • a Lua nasce tex2html_wrap_inline31meio-dia e se põe tex2html_wrap_inline31 meia-noite
A Lua tem a forma de um semi-círculo com a parte convexa voltada para o oeste. Lua e Sol, vistos da Terra, estão separados de aproximadamente 90°. A Lua nasce aproximadamente ao meio-dia e se põe aproximadamente à meia-noite. Após esse dia, a fração iluminada da face visível continua a crescer pelo lado voltado para o oeste, até que atinge a fase Cheia.
Lua Cheia
  • Lua e Sol, vistos da Terra, estão em direções opostas, separados de 180°, ou 12h.
  • a Lua nasce tex2html_wrap_inline31 18h e se põe tex2html_wrap_inline31 6h do dia seguinte.
Na fase cheia 100% da face visível está iluminada. A Lua está no céu durante toda a noite, nasce quando o Sol se põe e se põe no nascer do Sol. Lua e Sol, vistos da Terra, estão em direções opostas, separados de aproximadamente 180°, ou 12h. Nos dias subsequentes a porção da face iluminada passa a ficar cada vez menor à medida que a Lua fica cada vez mais a oeste do Sol; o disco lunar vai dia a dia perdendo um pedaço maior da sua borda voltada para o oeste. Aproximadamente 7 dias depois, a fração iluminada já se reduziu a 50%, e temos o Quarto-Minguante.
Lua Quarto-Minguante
  • a Lua está a oeste do Sol, que ilumina seu lado voltado para o leste
  • a Lua nasce tex2html_wrap_inline31meia-noite e se põe tex2html_wrap_inline31 meio-dia
A Lua está aproximadamente 90° a oeste do Sol, e tem a forma de um semi-círculo com a convexidade apontando para o leste. A Lua nasce aproximadamente à meia-noite e se põe aproximadamente ao meio-dia. Nos dias subsequentes a Lua continua a minguar, até atingir o dia 0 do novo ciclo.
O intervalo de tempo médio entre duas fases iguais consecutivas é de 29d 12h 44m 2.9s (tex2html_wrap_inline51 29,5 dias). Esse período é chamado mês sinódico, ou lunação, ou período sinódico da Lua.
Mov. Lua 
Apresentamos o céu à meia-noite, de 25 de março de 2007 a 8 de abril de 2007. Nas figuras, o zênite está no meio da figura.
O período sideral da Lua, ou mês sideral é o tempo necessário para a Lua completar uma volta em torno da Terra, em relação a uma estrela. Sua duração média é de 27d 7h 43m 11s , sendo portanto tex2html_wrap_inline31 2,25 dias mais curto do que o mês sinódico.
Um GrauO período sinódico da Lua, com duração de aproximadamente 29,5 dias (variando entre 29,26 6 e 29,80 dias), é, em média, 2,25 dias maior do que o período sideral da Lua porque nos 27,32 dias em que a Lua faz uma volta completa em relação às estrelas (o período sideral da Lua), o Sol de desloca [360°/(365,25 dias)] aproximadamente 27°=(27 dias × 1°/dia) para leste e, portanto, é necessário mais 2 dias [27°/(360°/27,32 dias)] para a Lua se deslocar estes 27° e estar na mesma posição em relação ao Sol, que define a fase.
Mes
Dia Lunar: Tendo em vista que o período sideral da Lua é de 27,32166 dias, isto é, que ela se move 360° em relação às estrelas para leste a cada 27,32 dias, deduz-se que ela se desloca para leste 13° por dia (360°/27,32), em relação às estrelas. Levando-se em conta que a Terra gira 360° em 24 horas, e que o Sol de desloca 1° para leste por dia, deduzimos que a Lua se atrasa 48 minutos por dia [(12°/360°)×(24h×60m)], isto é, a Lua nasce cerca de 48 minutos mais tarde a cada dia.
Recapitulando, a Lua se move cerca de 13° para leste, por dia, em relação às estrelas. Esse movimento é um reflexo da translação da Lua em torno da Terra, completada em 27,32 dias (mês sideral). O Sol também se move cerca de 1° por dia para leste, refletindo a translação da Terra em torno do Sol, completada em 365,2564 dias (ano sideral). Portanto, a Lua se move cerca de 12° por dia em relação ao Sol, e a cada dia a Lua cruza o meridiano local aproximadamente 48 min mais tarde do que no dia anterior. O dia lunar, portanto, tem 24h48m.
Rotação da Lua:
rotlua.gif
À medida que a Lua orbita em torno da Terra, completando seu ciclo de fases, ela mantém sempre a mesma face voltada para a Terra. Isso indica que o seu período de translação é igual ao período de rotação em torno de seu próprio eixo. Portanto. a Lua tem rotação sincronizada com a translação.
É muito improvável que essa sincronização seja casual. Acredita-se que ela tenha acontecido como resultado das grandes forças de maré exercidas pela Terra na Lua no tempo em que a Lua era jovem e mais elástica. As deformações tipo bojos causadas na superfície da Lua pelas marés teriam freiado a sua rotação até ela ficar com o bojo sempre voltado para a Terra e, portanto, com período de rotação igual ao de translação. Essa perda de rotação teria em consequência provocado o afastamento maior entre Lua e Terra (para conservar o momentum angular). Atualmente a Lua continua afastando-se da Terra, a uma taxa de 4 cm/ano.
Note que como a Lua mantém a mesma face voltada para a Terra, um astronauta na Lua não vê a Terra nascer ou se pôr. Se ele está na face voltada para a Terra, a Terra estará sempre visível. Se ele estiver na face oculta da Lua, nunca verá a Terra.

Como o sistema Terra-Lua sofre influência gravitacional do Sol e dos planetas, a Terra e a Lua não são esféricas e as marés provocam fricção dentro da Terra e da Lua, a órbita não é regular, precisando de mais de cem termos para ser calculada com precisão. O período sideral varia até 7 horas. O período sinódico tem variação ainda maior, de até 12 horas (Lang,2001).
Inclinacao
A órbita da Lua em torno da Terra está inclinada 5° em relação à orbita da Terra em torno do Sol.
Orbita
A órbita da Lua em torno da Terra é uma elipse, exagerada nesta figura, e a Lua está 10% mais próxima no perigeu do que no apogeu, o que faz com que seu tamanho aparente mude de um ciclo para outro.
© Kepler de Souza Oliveira Filho & Maria de Fátima Oliveira Saraiva 
Modificada em 29 ago 2012

Tamanho

A Lua, o único satélite natural da Terra, é o quinto satélite em tamanho, mais de dois-terços do tamanho de Mercúrio, e mais de três vezes maior do que o maior dos asteróides. Tem, de fato, um quarto do tamanho da Terra, com um diâmetro de 3476 km

Distância

Como a Lua está relativamente próxima, podemos medir sua distância por meios geométricos. A distância média é de 384 403 km.

Brilho

Após o Sol, a Lua cheia é o objeto mais brilhante do céu. Entretanto, sua superfície não é lisa e sua cor cinza-marrom reflete pouca luz. De fato, a lua é um dos mais pobres refletores do sistema solar. A quantidade de luz refletida por um corpo é chamada de albedo (Latim: albus, branco). A Lua reflete somente 7% da luz do Sol que incide sobre ela, de modo que seu albedo é 0.07.

Fases

As fases da Lua são causadas pelas posições relativas da Terra, da Lua e do Sol. A Lua orbita a Terra em média em 27 dias 7 horas 43 minutos.
O Sol sempre ilumina a metade da Lua na direção do Sol (exceto durante um eclipse lunar, quando a Lua passa pela sombra da Terra). Quando o Sol e Lua estão em lados opostos da Terra, a Lua aparece cheia para nós, um disco brilhante e redondo. Quando a Lua está entre a Terra e o Sol, ela aparece escura, a Luanova. No período intermediário, parece crescer até cheia, e então decresce até a próxima lua cheia.
A borda da sombra (o terminador) é sempre curva, sendo uma vista obliqua de um círculo, que dá à Lua sua forma crescente ou minguante.
A simulação ao lado mostra a Lua como vista no hemisério norte, com o seu hemisfério lunar oeste para a direita e seu hemisféril leste para a esquerda. Na fase cresente o Sol ilumina a Lua pelo lado oeste, na fase minguante o Sol ilumina a Lua pelo lado leste. No Brasil vemos as imagens giradas de 180° (hemisfério oeste lunar à esquerda, hemisfério leste lunar à direita).

O Lado Distante

As pessoas muitas vezes se referem ao "lado escuro da Lua", mas ele não existe. O Sol ilumina todos os lados da Lua enquanto ela gira. Entretanto, existe um "lado distante da Lua" que nunca é visto aqui da Terra. Com o passar das eras, as forças gravitacionais da Terra reduziram a rotação da Lua sobre seu eixo até que o período rotacional fosse exatamente igual ao período de sua órbita em torno da Terra.
Voce pode simular este efeito usando dois objetos redondos, como bolas. Mantenha uma das bolas estacionária, para representar a Terra. Mova a outra bolsa em volta da "Terra" sem mover seu pulso. Você verá que pessoas na "Terra" veêm todos os lados da "Lua". Entretanto, se voce girar a "Lua" na sua órbita em redor da "Terra", você pode ver que você pode ajustar a rotação de modo que somente um lado da "Lua" é visto a partir da "Terra". É por isto que as formas na face da Lua nunca mudam.
© NASA Space Academy

Eclipses

Um eclipse acontece sempre que um corpo entra na sombra de outro. Assim, quando a Lua entra na sombra da Terra, acontece um eclipse lunar. Quando a Terra é atingida pela sombra da Lua, acontece um eclipse solar.

Sombra de Um Corpo Extenso

eclipses.gif
Na parte superior da figura acima vemos a região da umbra e da penumbra da sombra. Na parte inferior, vemos a aparência da fonte para os pontos A a D na sombra.
Quando um corpo extenso (não pontual) é iluminado por outro corpo extenso definem-se duas regiões de sombra:
  • umbra: região da sombra que não recebe luz de nenhum ponto da fonte.
  • penumbra: região da sombra que recebe luz de alguns pontos da fonte.
umbra
A órbita da Terra em torno do Sol, e a órbita da Lua em torno da Terra, não estão no mesmo plano, ou ocorreria um eclipse da Lua a cada Lua Cheia, e um eclipse do Sol a cada Lua Nova.

Linha dos Nodos

Linha dos nodos
O plano da órbita da Lua em torno da Terra não é o mesmo plano que o da órbita da Terra em torno do Sol.
O plano da órbita da Lua está inclinado 5,2 ° em relação ao plano da órbita da Terra. Portanto só ocorrem eclipses quando a Lua está na fase de Lua Cheia ou Nova, e quando o Sol está sobre a linha dos nodos, que é a linha de intersecção do plano da órbita da Terra em torno do Sol com o plano da órbita da Lua em torno da Terra.
eclipsesol1
Eclipses do Sol e da Lua são os eventos mais espetaculares do céu. Um eclipse solar ocorre quando a Lua está entre a Terra e o Sol. Se o disco inteiro do Sol está atrás da Lua, o eclipse é total. Caso contrário, éparcial. Se a Lua está próxima de seu apogeu (ponto mais distante de sua órbita), o diâmetro da Lua é menor que o do Sol, e ocorre um eclipse anular.
anular
Como a excentricidade da órbita da Terra em torno do Sol é de 0,0167, o diâmetro angular do Sol varia 1,67% em torno de sua média, de 31'59". A órbita da Lua em torno da Terra tem uma excentricidade de 0,05 e, portanto, seu diâmetro angular varia 5% em torno de sua média, de 31'5", chegando a 33'16", muito maior do que o diâmetro máximo do Sol.
Eclipse Lunar
Um eclipse total da Lua acontece quando a Lua fica inteiramente imersa na umbra da Terra; se somente parte dela passa pela umbra, e resto passa pela penumbra, o eclipse é parcial. Se a Lua passa somente na penumbra, o eclipse é penumbral. Um eclipse total é sempre acompanhado das fases penumbral e parcial. Um eclipse penumbral é difícil de ver diretamente com o olho, pois o brilho da Lua permance quase o mesmo. Durante a fase total, a Lua aparece com uma luminosidade tênue e avermelhada. Isso acontece porque parte da luz solar é refractada na atmosfera da Terra e atinge a Lua. Porém essa luz está quase totalmente desprovida dos raios azuis, que sofreram forte espalhamento e absorção na espessa camada atmosférica atravessada.
eclipse lua

Eclipses do Sol

eclipsesolar
Durante um eclipse solar, a umbra da Lua na Terra tem sempre menos que 270 km de largura. Como a sombra se move a pelo menos 34 km/min para Leste, devido à órbita da Lua em torno da Terra, o máximo de um eclipse dura no máximo 7 1/2 minutos. Portanto um eclipse solar total só é visível, se o clima permitir, em uma estreita faixa sobre a Terra, chamada de caminho do eclipse. Em uma região de aproximadamente 3000 km de cada lado do caminho do eclipse, ocorre um eclipse parcial.
Mir
eclipse2020
Como a Lua se move aproximadamente 12° por dia, para leste, em relação ao Sol (360°/29,5 dias= 12°/dia), o que implica numa velocidade de:
\frac{ 12^\circ/dia}{360^\circ} \times 2\pi\times 384\,000 km = \simeq 80400 km/dia \simeq 56 km/min

A velocidade de um ponto da superfície da Terra devido à rotação para leste da Terra é, 
\frac{2\pi}{R_\oplus}=\frac{2\pi\times6370 km}{24 h} = 1667 km/h \simeq 28 km/min

Como a velocidade da Lua no céu é maior do que a velocidade de rotação da Terra, a velocidade da sombra da Lua na Terra tem o mesmo sentido do movimento (real) da Lua, ou seja, para leste. O valor da velocidade da sombra é, grosseiramente, $56 km/min - 28  km/min = 28  km/min$. Cálculos mais precisos, levando-se em conta o ângulo entre os dois movimentos, mostram que a velocidade da Lua em relação a um certo ponto da Terra é de pelo menos 34 km/min para leste. A duração da totalidade do eclipse, em um certo ponto da Terra, será o tempo desde o instante em que a borda leste da umbra da Lua toca esse ponto até o instante em que a borda oeste da Lua o toca. Esse tempo é igual ao tamanho da umbra dividido pela velocidade com que ela anda, aproximadamente,
\frac{270 km}{34 km/min} = 7,9 min
Na realidade, a totalidade de um eclipse dura no máximo 7 1/2 minutos. Um eclipse solar total começa quando a Lua alcança a direção do disco do Sol, e aproximadamente uma hora depois o Sol fica completamente atrás da Lua. Nos últimos instantes antes da totalidade, as únicas partes visíveis do Sol são aquelas que brilham através de pequenos vales na borda irregular da Lua, um fenônemo conhecido como "anel de diamante", já descrito por Edmund Halley no eclipse de 3 de maio de 1715. Durante a totalidade, o céu se torna escuro o suficiente para se observar os planetas e as estrelas mais brilhantes. Após a fase de "anel de diamante", o disco do Sol fica completamente coberto pela Lua, e a coroa solar, a atmosfera externa do Sol, composta de gases rarefeitos que se extendem por milhões de km, aparece. Note que é extremamente perigoso olhar o Sol diretamente. Qualquer exposição acima de 15 segundos danifica permanentemente o olho, sem apresentar qualquer dor!
animation
Em 4 Nov 1994 eu filmei o eclipse solar total em Criciúma, Santa Catarina, e produzi esta figura.

Eclipses da Lua

Eclipses da Lua
Um eclipse lunar ocorre quando a Lua entra na sombra da Terra. À distância da Lua, 384 mil km, a sombra da Terra, que se extende por 1,4 milhões de km, cobre aproximadamente 3 luas cheias. Em contraste com um eclipse do Sol, que só é visível em uma pequena região da Terra, um eclipse da Lua é visível por todos que possam ver a Lua. Como um eclipse da Lua pode ser visto, se o clima permitir, de todo a parte noturna da Terra, eclipses da Lua são muito mais freqüentes que eclipses do Sol, de um dado local na Terra. A duração máxima de um eclipse lunar é 3,8 hr, e a duração da fase total é sempre menor que 1,7 hr.

Temporada de Eclipses

Se o plano orbital da Lua coincidisse com o plano da eclíptica, um eclipse solar ocorreria a toda Lua nova e um eclipse lunar a toda Lua cheia. Entretanto, o plano está inclinado 5,2 ° e, portanto, a Lua precisa estar próxima da linha de nodos (cruzando o plano da eclíptica) para que um eclipse ocorra. Como o sistema Terra-Lua orbita o Sol, aproximadamente duas vezes por ano a linha dos nodos está alinhada com o Sol e a Terra. Estas são as temporadas dos eclipses, quando os eclipses podem ocorrer. Quando a Lua passar pelo nodo durante a temporada de eclipses, ocorre um eclipse.
PlanoComo a órbita da Lua gradualmente gira sobre seu eixo (com um período de 18,6 anos de regressão dos nodos), as temporadas ocorrem a cada 173 dias, e não exatamente a cada meio ano. A distância angular da Lua do nodo precisa ser menor que 4,6° para um eclipse lunar, e menor que 10,3 ° para um eclipse solar, o que estende a temporada de eclipses para 31 a 38 dias, dependendo dos tamanhos aparentes e velocidades aparentes do Sol e da Lua, que variam porque as órbitas da Terra e da Lua são elípticas, de modo que pelo menos um eclipse ocorre a cada 173 dias.
Entre dois e sete eclipses ocorrem anualmente. Em cada temporada usualmente acontece um eclipse solar e um anular, mas podem acontecer três eclipses por temporada, numa sucessão de eclipse solar, lunar e solar novamente, ou lunar, solar e lunar novamente. Quando acontecem dois eclipses lunares na mesma temporada os dois são penumbrais. As temporadas de eclipses são separadas por 173 dias [(1 ano - 20 dias)/2].
Eclipses do Sol 2010-2020
DataTempo DinâmicoLatitudeLongitudeTipo de
(centro)(centro)(centro)Eclipse
15 Jan 201007:07:392 N69 EAnular do Sol
11 Jul 201019:34:3820 S122 OTotal do Sol
4 Jan 201108:51:4265 N21 EParcial do Sol
1 Jun 201121:17:1868 N47 EParcial do Sol
1 Jul 201108:39:3065 S29 EPenumbral do Sol
25 Nov 201106:21:2469 S82 OParcial do Sol
20 Mai 201223:53:5449 N176 EAnular do Sol
13 Nov 201222:12:5540 S161 OTotal do Sol
10 Mai 201300:26:202 N175 EAnular do Sol
3 Nov 201312:47:363 N12 OTotal do Sol
29 Abr 201406:04:3371 S131 EAnular do Sol
23 Out 201421:45:3971 N97 OParcial do Sol
20 Mar 201509:46:4764 N7 OTotal do Sol
13 Set 201506:55:1972 S2 OParcial do Sol
9 Mar 201601:58:1910 N149 ETotal do Sol
1 Set 201609:08:0211 S38 EAnular do Sol
26 Fev 201714:54:3335 S31 OAnular do Sol
21 Ago 201718:26:4037 N88 OTotal do Sol
15 Fev 201820:52:3371 S1 EParcial do Sol
13 Jul 201803:02:1668 S127 EParcial do Sol
11 Ago 201809:47:2870 N174 EParcial do Sol
6 Jan 201901:42:3867 N154 EParcial do Sol
2 Jul 201919:24:0717 S109 OTotal do Sol
26 Dez 201905:18:531 N102 EAnular do Sol
21 Jun 202006:41:1531 N80 EAnular do Sol
14 Dez 202016:14:3940 S68 OTotal do Sol
Eclipses da Lua 2010-2020
DataTempo DinâmicoTipo de
(centro)Eclipse
26 Jun 201011:39:34Parcial da Lua
21 Dez 201008:18:04Total da Lua
15 Jun 201120:13:43Total da Lua
10 Dez 201114:32:56Total da Lua
04 Jun 201211:04:20Parcial da Lua
28 Nov 201214:34:07Penumbral da Lua
25 Abr 201320:08:38Parcial da Lua
25 Mai 201304:11:06Penumbral da Lua
18 Out 201323:51:25Penumbral da Lua
15 Abr 201407:46:48Total da Lua
08 Out 201410:55:44Total da Lua
04 Abr 201512:01:24Total da Lua
28 Set 201502:48:17Total da Lua
23 Mar 201611:48:21Penumbral da Lua
16 Set 201618:55:27Penumbral da Lua
11 Fev 201700:45:03Penumbral da Lua
07 Ago 201718:21:38Parcial da Lua
31 Jan 201813:31:00Total da Lua
27 Jul 201820:22:54Total da Lua
21 Jan 201905:13:27Total da Lua
16 Jul 201921:31:55Parcial da Lua
10 Jan 202019:11:11Penumbral da Lua
05 Jun 202019:26:14Penumbral da Lua
05 Jul 202004:31:12Penumbral da Lua
30 Nov 202009:44:01Penumbral da Lua
A diferença entre o Tempo Dinâmico e o Tempo Universal, devido principalmente à fricção causada pelas marés, aumenta de 67s em 2010 para 74s em 2020.

Saros

O Sol e o nodo ascendente ou descendente da Lua estão na mesma direção uma vez cada 346,62 dias. Dezenove de tais períodos (=6585,78 dias = 18 anos 11 dias) estão próximos em duração a 223 meses sinódicos. Isto significa que a configuração Sol-Lua e os eclipses se repetem na mesma ordem depois deste período. Este ciclo já era conhecido pelos antigos Babilônios, e por razões históricas, é conhecido como Saros, que significa repetição em grego.
© Kepler de Souza Oliveira Filho & Maria de Fátima Oliveira Saraiva 
Modificada em 3 jun 2012

Como se calcula o comprimento da sombra?

Consideremos um corpo luminoso de raio R a uma distância d de uma esfera opaca de raio R'.
compeclipse.gif
Por semelhança de triângulos temos que:
\frac{R^\prime}{L}= \frac{R}{L+d}
E portanto a altura do cone de sombra (L) é:
L = \frac{R'd}{R-R'}
Onde:
  • L = comprimento da sombra
  • d = distância da fonte à esfera opaca
  • R' = raio da esfera opaca
  • R = raio da fonte
bar

Como se calcula o raio da sombra da Terra à distância da Lua?

sombra.gif
  • L = comprimento da sombra
  • R' = raio da Terra
  • r(l) = raio da sombra a uma distância l da Terra
Novamente por semelhança de triângulos temos que: 
\frac{r(l)}{L-l} = \frac{R'}{L}

E o raio da sombra à distância l da esfera opaca é: 
r(l) = R'{\frac{L-l}{L}}
bar

Exemplos de cálculos de eclipses

  1. Calcular o comprimento médio da sombra da Terra, considerando-se:
    • distância Terra-Sol: 149 600 000 km
    • raio da Terra: 6370 km
    • raio do Sol: 696 000 km
    Como
    comprimento da sombra =distância da fonte × raio da esfera
    raio da fonte - raio da esfera
    Obtemos:
    comprimento da sombra =149 600 000 km × 6370 km
    696 000 km - 6370 km
    ou
    comprimento da sombra = 1 381 800 km
  2. Seja r o raio da Terra, R = 109r o raio do Sol, d = 23680r a distância entre o Sol e a Terra.
    • a) Qual é o comprimento do cone de sombra formado?
      L =d × r
      R-r
      =23680 r2
      109r-r
      = 219,26r
    • b) Qual é o raio deste cone a uma distância de l = 60r por onde passa a Lua? 
      Como
      r(l)
      L-l
      =r
      L
      r(l) =r
      L
      (L-l) =r
      219,26r
      (219,26r-60r) = 0,726 r
    • c) Sendo rL = r/3,6 o raio da Lua, quantos diâmetros lunares cabem nessa região da sombra?
      r(l)/rL =0,726 r
      r / 3,6
      = 2,6
    Isto é, na distância da Lua, a umbra da Terra tem 9200 km. A penumbra tem 16 000 km e como a velocidade da Lua na sua órbita é de 3400 km/hr, um eclipse total da Lua dura cerca de 1h 40m e um eclipse parcial da Lua dura cerca de 6 h.
A duração e forma dos eclipses dependem da distância instantânea do Sol e da Lua, que variam devido às órbitas elípticas, e também dos ângulos no momento do eclipse, que variam devido à inclinação da órbita da Terra em torno do Sol (obliqüidade da eclíptica=23,5°), e da inclinação da órbita da Lua (5,2°).
bar
© Kepler de Souza Oliveira Filho & Maria de Fátima Oliveira Saraiva 
Modificada em 25 ago 2008
Os planetas estão muito mais próximos de nós do que as estrelas, de forma que eles parecem se mover, ao longo do ano, entre as estrelas de fundo. Esse movimento se faz, geralmente, de oeste para leste (não confundir com o movimento diurno, que é sempre de leste para oeste!), mas em certas épocas o movimento muda, passando a ser de leste para oeste. Esse movimento retrógrado pode durar vários meses (dependendo do planeta), até que fica mais lento e o planeta reverte novamente sua direção, retomando o movimento normal. O movimento observado de cada planeta é uma combinação do movimento do planeta em torno do Sol com o movimento da Terra em torno do Sol, e é simples de explicar quando sabemos que a Terra está em movimento, mas fica muito difícil de descrever num sistema em que a Terra esteja parada.
retrogrado

O modelo geocêntrico

Geocêntrico Ptolomeu
Apesar da dificuldade de compreender e explicar o movimento observado dos planetas do ponto de vista geocêntrico (a Terra no centro do Universo), o geocentrismo foi uma idéia dominante na Astronomia durante toda a Antiguidade e Idade Média. O sistema geocêntrico também é conhecido como sistema ptolomaico, pois foi Cláudio Ptolomeu, o último dos grandes astrônomos gregos (150 d.C.), quem construiu o modelo geocêntrico mais completo e eficiente. Ptolomeu explicou o movimento dos planetas através de uma combinação de círculos: o planeta se move ao longo de um pequeno círculo chamado epiciclo, cujo centro se move em um círculo maior chamado deferente. A Terra fica numa posição um pouco afastada do centro do deferente (portanto o deferente é um círculo excêntrico em relação à Terra). Para dar conta do movimento não uniforme dos planetas, Ptolomeu introduziu ainda o equante, que é um ponto ao lado do centro do deferente oposto à posição da Terra, em relação ao qual o centro do epiciclo se move a uma taxa uniforme.
Eq
O objetivo de Ptolomeu era produzir um modelo que permitisse prever a posição dos planetas de forma correta, e nesse ponto ele foi razoavelmente bem sucedido. Por essa razão esse modelo continuou sendo usado sem mudança substancial por 1300 anos.
RetGeo
Simulação do movimento retrógrado no sistema geocêntrico.
Web Syllabus, Dept. Physics & Astronomy, University of Tennessee

O Modelo Heliocêntrico

Copernico
Em 1492 termina a ocupação árabe (mouros) da península ibérica, que se iniciou em 711, e começa a Renascença. Inicia-se a tradução dos textos árabes e gregos, trazendo para a Europa os conhecimentos clássicos de Astronomia, Matemática, Biologia e Medicina. Nicolau Copérnico representou o Renascimento na Astronomia. Copérnico (1473-1543) foi um astrônomo polonês com grande inclinação para a matemática. Estudando na Itália, ele leu sobre a hipótese heliocêntrica proposta (e não aceita) por Aristarco (tex2html_wrap_inline59 300 a.C.), e achou que o Sol no centro do Universo era muito mais razoável do que a Terra. Copérnico registrou suas idéias num livro - De Revolutionibus- publicado no ano de sua morte.
Os conceitos mais importante colocados por Copérnico foram:
  • introduziu o conceito de que a Terra é apenas um dos seis planetas (então conhecidos) girando em torno do Sol
  • colocou os planetas em ordem de distância ao Sol: Mercúrio, Vênus, Terra, Marte, Júpiter, Saturno (Urano, Netuno e o planeta anão Plutão).
  • determinou as distâncias dos planetas ao Sol, em termos da distância Terra-Sol.
  • deduziu que quanto mais perto do Sol está o planeta, maior é sua velocidade orbital. Dessa forma, o movimento retrógrado dos planetas foi facilmente explicado sem necessidade de epiciclos.
RetCop
Simulação do movimento retrógrado no sistema heliocêntrico.
Web Syllabus, Dept. Physics & Astronomy, University of TennesseeRetrógrado
Interno
Copérnico manteve a idéia de que as órbitas dos planetas eram circulares, e embora o movimento dos planetas ficasse simples de entender no seu sistema, as posições previstas para os planetas não eram em nada melhores do que as posições previstas no sistema de Ptolomeu.
proxima
Eudoxus a CopernicoVideo em (smi) (RealPlayer) mostrando os Movimentos Planetários e os Modelos de Eudoxus até Copérnico, desenvolvido por Mogi Massimo Vicentini do Civico Planetario Di Milano.

Volta Astronomia e Astrofísica
© Kepler de Souza Oliveira Filho & Maria de Fátima Oliveira Saraiva 
Modificada em 21 ago 2006

Movimento dos Planetas

Tycho, Kepler e Galileo

A Teoria Heliocêntrica conseguiu dar explicações mais simples e naturais para os fenômenos observados (por exemplo, o movimento retrógrado dos planetas), porém Copérnico não conseguiu prever as posições dos planetas de forma precisa, nem conseguiu provar que a Terra estava em movimento.

Tycho

quadrante Brahe Instrumentos
Três anos após a morte de Copérnico, nasceu o dinamarquês Tycho Brahe (1546-1601), o último grande astrônomo observacional antes da invenção do telescópio. Usando instrumentos fabricados por ele mesmo, Tycho fez extensivas observações das posições de planetas e estrelas, com uma precisão em muitos casos melhor do que 1 minuto de arco (1/30 do diâmetro aparente do Sol). No seu livro Astronomia instauratae mechanica, de 1598, ele descreve como desenvolveu e utilisou quatro tipos diferentes de esferas armilares, melhores do que as de Hiparcos e as de Ptolomeu, descritas no Syntaxis de Ptolomeu. Tycho podia medir diretamente as coordenadas eclípticas ou equatorias dos objetos celestes, com as esferas, enquanto seus outros instrumentos mediam coordenadas horizontais (altura e azimute). Sua maior esfera armilar tinha 2,6 metros de diâmetro, e ele descreveu que a maior fonte de erro era a flexão e deslocamento dos círculos (armillae, em latim), devido ao seu próprio peso.
O excelente trabalho de Tycho como observador lhe propiciou o patrocínio do rei da Dinamarca, Frederic II (1534-1588), e assim Tycho pode construiu seu próprio observatório, na pequena ilha báltica de Hven (entre Dinamarca e Suécia).
Tycho
Após a morte do rei, entretanto, seu sucessor se desentendeu com Tycho e retirou seus privilégios. Assim, em 1597 Tycho foi forçado a deixar a Dinamarca, e foi trabalhar como astrônomo da corte para o imperador da Bohemia, em Praga.
Tycho Brahe não acreditava na hipótese heliocêntrica de Copérnico, mas foram suas observações dos planetas que levaram às leis de Kepler do movimento planetário.
Em 1600 (um ano antes de sua morte), Tycho contratou para ajudá-lo na análise dos dados sobre os planetas, colhidos durante 20 anos, um jovem e hábil matemático alemão chamado Johannes Kepler (1571-1630).

Kepler

Kepler
Johannes Kepler (1571-1630) estudou inicialmente para seguir carreira teológica. Na Universidade ele leu sobre os princípios de Copérnico e logo se tornou um entusiástico defensor do heliocentrismo. Em 1594 conseguiu um posto de professor de matemática e astronomia em uma escola secundária em Graz, na Áustria, mas poucos anos depois, por pressões da Igreja Católica (Kepler era protestante), foi exilado, e foi então para Praga trabalhar com Tycho Brahe.
Quando Tycho morreu, Kepler "herdou" seu posto e seus dados, a cujo estudo se dedicou pelos 20 anos seguintes.
O planeta para o qual havia o maior número de dados era Marte. Kepler conseguiu determinar as diferentes posições da Terra após cada período sideral de Marte, e assim conseguiu traçar a órbita da Terra. Encontrou que essa órbita era muito bem ajustada por um círculo excêntrico, isto é, com o Sol um pouco afastado do centro.
elipse da Terra
Embora as órbitas dos planetas sejam elipses, as elipticidades são tão pequenas que elas se parecem com círculos. Nesta figura mostramos a elipse que descreve a órbita da Terra em torno do Sol, na forma correta. A posição do Sol, no foco, está marcada por um pequeno círculo.
Kepler conseguiu também determinar a órbita de Marte, mas ao tentar ajustá-la com um círculo não teve sucesso. Ele continuou insistindo nessa tentativa por vários anos, e em certo ponto encontrou uma órbita circular que concordava com as observações com um erro de 8 minutos de arco. Mas sabendo que as observações de Tycho não poderiam ter um erro desse tamanho (apesar disso significar um erro de apenas 1/4 do tamanho do Sol), Kepler descartou essa possibilidade.
Finalmente, passou à tentativa de representar a órbita de Marte com uma oval, e rapidamente descobriu que uma elipse ajustava muito bem os dados. (O indiano Aryabhata I (476-550), escreveu em seu tratado de astronomia e matemática, Aryabhatiya, que as órbitas dos planetas em torno do Sol deveriam ser elipses.) A posição do Sol coincidia com um dos focos da elipse. Ficou assim explicada também a trajetória quase circular da Terra, com o Sol afastado do centro.
elipse de Marte elipse de Plutão
Embora as órbitas dos planetas sejam elipses, as elipticidades são tão pequenas que elas se parecem com círculos. Nestas figuras mostramos as elipses que descrevem as órbitas de Marte e Plutão em torno do Sol, na forma correta. A órbita de Plutão tem grande excentricidade, comum entre os asteróides do Sistema Solar. A órbita de Marte está entre as mais excêntricas dos planetas, só perdendo para Mercúrio. A posição do Sol, no foco, está marcada por um pequeno círculo, e o centro da órbita por uma cruz.

Propriedades das Elipses

elipse
  • Em qualquer ponto da curva, a soma das distâncias desse ponto aos dois focos é constante. Sendo F e F' os focos, P um ponto sobre a elipse, e a o seu semi-eixo maior, então:
    F P + F' P = constante = 2a
  • Quanto maior a distância entre os dois focos, maior é a excentricidade (e) da elipse. Sendo c a distância do centro a cada foco, a o semi-eixo maior, e b o semi-eixo menor, a excentricidade é definida por;
    displaymath33
    elipse
    já que quando o ponto está exatamente sobre b temos um triângulo retângulo, com a2 = b2+c2.
  • Se imaginamos que um dos focos da órbita do planeta é ocupado pelo Sol, o ponto da órbita mais próximo do Sol é chamado periélio, e o ponto mais distante é chamado afélio. A distância do periélio ao foco (tex2html_wrap_inline58) é: pericentro
    displaymath34
    e a distância do afélio ao foco (tex2html_wrap_inline60) é: 
    displaymath35

As Leis de Kepler

  1. Lei das órbitas elípticas (Astronomia Nova, 1609): Astronomia
NovaA órbita de cada planeta é uma elipse, com o Sol em um dos focos. Como consequência da órbita ser elíptica, a distância do Sol ao planeta varia ao longo de sua órbita.
  2. Lei da áreas (1609): A reta unindo o planeta ao Sol varre áreas iguais em tempos iguais. O significado físico desta lei é que a velocidade orbital não é uniforme, mas varia de forma regular: quanto mais distante o planeta está do Sol, mais devagar ele se move. Dizendo de outra maneira, esta lei estabelece que a velocidade areal é constante.
  3. Lei harmônica (Harmonices Mundi, 1618): O quadrado do período orbital dos planetas é diretamente proporcional ao cubo de sua distância média ao Sol. Esta lei estabelece que planetas com órbitas maiores se movem mais lentamente em torno do Sol e, portanto, isso implica que a força entre o Sol e o planeta decresce com a distância ao Sol.Sendo P o período sideral do planeta, a o semi-eixo maior da órbita, que é igual à distância média do planeta ao Sol, e K uma constante, podemos expressar a tex2html_wrap_inline68 lei como:

    displaymath36
    Se medimos P em anos (o período sideral da Terra), e a em unidades astronômicas (a distância média da Terra ao Sol), então K = 1, e podemos escrever a tex2html_wrap_inline68 lei como:

    displaymath37
A tabela abaixo mostra como fica a tex2html_wrap_inline68 Lei de Kepler para os planetas visíveis a olho nu. 
PlanetaSemi-eixoPeríodo  
 Maior (UA)(anos)a3P2
Mercúrio0,3870,2410,0580,058
Vênus0,7230,6150,3780,378
Terra1,0001,0001,0001,000
Marte1,5241,8813,5373,537
Júpiter5,20311,862140,8140,7
Saturno9,53429,456867,9867,7

Galileo

Galileo
Uma grande contribuição ao Modelo Heliocêntrico foi dada pelo italiano Galileo Galilei (1564 - 1642). Galileo foi o pai da moderna física experimental e da astronomia telescópica. Seus experimentos em mecânica estabeleceram parte dos conceitos de inércia, e de que a aceleração de corpos em queda livre não depende de seu peso, que foram mais tarde incorporados às leis do movimento de Newton.
Galileo começou suas observações telescópicas em 1609, usando um telescópio construído por ele mesmo. Não cabe a Galileo o crédito da invenção do telescópio, no entanto. Lentes e óculos já eram conhecidos desde cerca de 1350, e Galileo tinha ouvido falar do telescópio construído pelo holandês Hans Lippershey (1570-1619) em 1608. Galileo soube desse instrumento em 1609, e, sem ter visto o telescópio de Lippershey, construiu o seu próprio, com aumento de 3 vezes, ainda em 1609. Em seguida ele construiu outros instrumentos, e o melhor tinha aumento de 30 vezes.
telescopio telescopio 
Telescópios de Galileo no Istituto e Museo di Storia della Scienza, em Florença.
Galileo usou o telescópio para observar sistematicamente o céu, fazendo várias descobertas importantes, como:
  • descobriu que a Via Láctea era constituída por uma infinidade de estrelas.
  • descobriu que Júpiter tinha quatro satélites, ou luas, orbitando em torno dele, com períodos entre 2 e 17 dias. Esses satélites são chamados "galileanos", e são: Io, Europa, Ganimedes e Calisto. Desde então, mais 57 satélites foram descobertos em Júpiter. Essa descoberta de Galileo foi particularmente importante porque mostrou que podia haver centros de movimento que por sua vez também estavam em movimento; portanto o fato da Lua girar em torno da Terra não implicava que a Terra estivesse parada.
  • descobriu que Vênus passa por um ciclo de fases, assim como a Lua.
Fases de Venus
SideriusEssa descoberta também foi fundamental porque, no sistema ptolomaico, Vênus está sempre mais próximo da Terra do que o Sol, e como Vênus está sempre próximo do Sol, elenunca poderia ter toda sua face iluminada voltada para nós (fase cheia) e, portanto, deveria sempre aparecer como nova ou no máximo crescente. Ao ver que Vênus muitas vezes aparece em fase quase totalmente cheia, Galileo concluiu que ele viaja ao redor do Sol, passando às vezes pela frente dele e outras vezes por trás dele, e não revolve em torno da Terra.
  • descobriu a superfície em relevo da Lua, e as manchas do Sol. Ao ver que a Lua tem cavidades e elevações assim como a Terra, e que o Sol também não tem a superfície lisa, mas apresenta marcas, provou que os corpos celestes não são esferas perfeitas, mas sim têm irregularidades, assim como a Terra. Portanto a Terra não é diferente dos outros corpos, e pode ser também um corpo celeste.
Manchas
Reprodução de um desenho de Galileu mostrando as manchas solares, em 23 de junho de 1612.
InquisicaoAs descobertas de Galileo proporcionaram grande quantidade de evidências em suporte ao sistema heliocêntrico. Por causa disso, ele foi chamado a depor ante a Inquisição Romana, sob acusação de heresia, e obrigado a se retratar. Apenas em 1980, o Papa João Paulo II [Karol Joseph Wojtyla (1920-2005)] ordenou um re-exame do processo contra Galileo, o que acabou por eliminar os últimos vestígios de resistência, por parte da igreja Católica, à revolução Copernicana. Galileo foi perdoado em 31 de outubro de 1992. 

O astrônomo alemão Simon Marius (Mayr) (1573-1624) afirma ter descoberto os satélites de Júpiter algumas semanas antes de Galileo, mas Galileo, descobrindo-os independentemente em 7 e 13 de janeiro de 1610, publicou primeiro, em março de 1610, no seu Sidereus Nuncius. Os atuais nomes dos satélites foram dados por Marius em 1614, seguindo sugestão de Johannes Kepler. Na mitologia grega, Io, Calisto e Europa foram mulheres amantes de Zeus (Júpiter), enquanto Ganimedes foi um jovem de extraordinária beleza, por quem Zeus se apaixonou e atraiu ao Olimpo levado por uma águia.
Bíblia: A razão da proibição da Igreja ao heliocentrismo era que no Salmo 104:5 do Antigo Testamento da Bíblia, está escrito: Deus colocou a Terra em suas fundações, para que nunca se mova.
© Kepler de Souza Oliveira Filho & Maria de Fátima Oliveira Saraiva 
Modificada em 11 set 2012


As Três Leis de Kepler sobre o Movimento dos Planetas

No século 16, o astrônomo polonês Nicolaus Copernicus trocou a visão tradicional do movimento planetário centrado na Terra por um em que o Sol está no centro e os planetas giram em torno deste em órbitas circulares. Embora o modelo de Copérnico estivesse muito próximo de predizer o movimento planetário corretamente, existiam discrepâncias. Isto ficou particularmente evidente para o planeta Marte, cuja órbita havia sido medida com grande precisão pelo astrônomo dinamarquês Tycho Brahe.
O problema foi resolvido pelo matemático alemão Johannes Kepler, que descobriu que as órbitas planetárias não eram círculos, mas elipses. Kepler descreveu o movimento planetário por três leis.
1a Lei: Cada planeta revolve em torno do Sol em uma órbita elíptica, com o Sol ocupando um dos focos da elipse.
2a Lei: A linha reta que une o Sol ao planeta varre áreas iguais em intervalos de tempo iguais.
3a Lei: Os quadrados dos períodos orbitais dos planetas são proporcionais aos cubos dos semi-eixos maiores das órbitas (P2=ka3).
As leis de Kepler não se aplicam somente aos planetas orbitando o Sol, mas a todos os casos em que um corpo celestial orbita um outro sob a influência da gravitação -- luas orbitando planetas, satélites artificiais orbitando a Terra ou outros corpos do sistema solar, e mesmo estrelas orbitando outras estrelas.

Isaac Newton

Newton
Estudando o movimento dos corpos, Galileo Galilei (1564-1642) descobriu através de experimentos que "um corpo que se move, continuará em movimento a menos que uma força seja aplicada e que o force a parar." Galileo argumentou que o movimento é tão natural quanto o repouso, isto é, um corpo que está em repouso permanece em repouso a menos que seja submetido a uma força que o faça mover-se. Se um objeto já está se movimentando, ele continuará em movimento a menos que seja submetido a uma força que o faça parar.
Galileo descobriu os satélites de Júpiter e comunicou seus dados a Johannes Kepler (1571-1630), que os observou pessoalmente. Os satélites obedecem às Três Leis de Kepler, porém com um valor da constante kdiferente na 3a Lei (P2=k a3).
Sessenta anos depois, o inglês Isaac Newton (1643-1727) foi quem deu uma explicação completa ao movimento e à forma como as forças atuam. A descrição está contida nas suas 3 leis:
Primeira Lei: Inércia, é baseada na enunciada por Galileo, embora Galileo não tenha realmente chegado ao conceito de inércia. Na ausência de forças externas, um objeto em repouso permanece em repouso, e um objeto em movimento permanece em movimento, ficando em movimento retilíneo e com velocidade constante. Esta propriedade do corpo que resiste à mudança, chama-se inércia. A medida da inércia de um corpo é seu momentum. Newton definiu o momentum de um objeto como sendo proporcional à sua velocidade. A constante de proporcionalidade, que é a sua propriedade que resiste à mudança, é a sua massa:
$\vec p = m\vec v =$ constante se $\vec F = 0$
Segunda Lei: Lei da Força, relaciona a mudança de velocidade do objeto com a força aplicada sobre ele. A força líquida aplicada a um objeto é igual à massa do objeto vezes a aceleração causada ao corpo por esta força. A aceleração é na mesma direção da força.
$\vec F = m \times \vec a = m \times \frac{d\vec v}{dt} = \frac{d\vec p}{dt}$
Terceira Lei: Ação e Reação, estabelece que se o objeto exerce uma força sobre outro objeto, este outro exerce uma força igual e contrária.
Newton pôde explicar o movimento dos planetas em torno do Sol, assumindo a hipótese de uma força dirigida ao Sol, que produz uma aceleração que força a velocidade do planeta a mudar de direção continuamente.Como foi que Newton descobriu a Lei da Gravitação Universal? Considerando o movimento da Lua em torno da Terra e as leis de Kepler.
Aceleração em órbitas circulares: o holandês Christiaan Huygens (1629-1695), em 1673 e, independentemente, Newton, em 1665 (mas publicado apenas em 1687, no Philosophiae naturalis principia mathematica,27 MB PDF) Principiadescreveram a aceleração centrípeta.
acel
Consideremos uma partícula que se move em um círculo. 
No instante t a partícula está em D, com velocidade tex2html_wrap_inline143 na direção DE. Pela 1a. lei de Newton, se não existe uma força agindo sobre o corpo, ele continuará em movimento na direção DE. 
Após um intervalo de tempo dt, a partícula está em G, percorreu a distância v.dt, e está com velocidade tex2html_wrap_inline149, de mesmo módulo v, mas em outra direção. 
Consideremos infinitésimos: Deltat = dt e Deltav = dv.
Seja tex2html_wrap_inline151 o ângulo entre o ponto D e o ponto G.
Mas tex2html_wrap_inline151 também é o ângulo entre tex2html_wrap_inline143 e tex2html_wrap_inline149, já que v1 é perpendicular a OD e v2 é perpendicular a OG. Portanto, 
displaymath159
e, portanto, a aceleração a=dv/dt: 
displaymath161
Se a partícula tem massa m, a força central necessária para produzir a aceleração é:
$F = m\frac{v^2}{r}$
Claramente a dedução é válida se tex2html_wrap_inline163 e tex2html_wrap_inline145 são extremamente pequenos e é um exemplo da aplicação do cálculo diferencial, que foi desenvolvido pela primeira vez por Newton [e simultaneamente por Gottfried Wilhelm von Leibniz (1646-1716)].

Gravitação Universal

Obviamente a Terra exerce uma atração sobre os objetos que estão sobre sua superfície. Newton se deu conta de que esta força se estendia até a Lua e produzia a aceleração centrípeta necessária para manter a Lua em órbita. O mesmo acontece com o Sol e os planetas. Então Newton formulou a hipótese da existência de uma força de atração universal entre os corpos em qualquer parte do Universo.
A força centrípeta que o Sol exerce sobre um planeta de massa m, que se move com velocidade v à uma distância r do Sol, é dada por:
$F = m\frac{v^2}{r}$                                                        (Fc)

Assumindo neste instante uma órbita circular, que mais tarde será generalizada para qualquer tipo de órbita, o período P   do planeta é dado por: 
displaymath107
Pela 3a Lei de Kepler,
P2=k r3
onde a constante k depende das unidades de P e r. Temos então que
displaymath109
Seja m a massa do planeta e M a massa do Sol. Substituindo-se esta velocidade na expressão da força centrípeta exercida pelo Sol (Fc) no planeta, a força pode então ser escrita como: 
displaymath110
e, de acordo com a 3a. lei de Newton, o planeta exerce uma força igual e contrária sobre o Sol. A força centrípeta exercida pelo planeta sobre o Sol, de massa M é dada por: 
displaymath111
Newton deduziu então que:
displaymath112
onde G é uma constante de proporcionalidade. Tanto o Sol quanto o planeta que se move em torno dele experimentam a mesma força, mas o Sol permanece aproximadamente no centro do Sistema Solar porque a massa do Sol é aproximadamente mil vezes maior que a massa de todos os planetas somados.
Newton então concluiu que para que a atração universal seja correta, deve existir uma força atrativa entre pares de objetos em qualquer região do universo, e esta força deve ser proporcional a suas massas e inversamente proporcional ao quadrado de suas distâncias. A constante de proporcionalidade G depende das unidades das massas e da distância.

Derivação da "Constante" k

centro de massa
Suponha dois corpos de massas m1 e m2, separados do centro de massa por r1 e r2. 
A atração gravitacional entre eles depende da distância total entre eles e é dada por:
$F_G=\frac{Gm_1m_2}{(r_1+r_2)^2}$
Já a aceleração centrípeta é dirigida ao centro de massa e é dada por:
$F_1 = \frac{m_1v_1^2}{r_1}$
e
$F_2 = \frac{m_2v_2^2}{r_2}$
Como estamos assumindo órbitas circulares e, por definição de centro de massa, os períodos têm que ser os mesmos, ou o centro de massa se moveria, temos:

displaymath116
e similarmente para m2. Para que os corpos permaneçam em órbitas, as forças precisam ser idênticas: 
displaymath117 
e 
displaymath118
Eliminando-se tex2html_wrap_inline171 na primeira e tex2html_wrap_inline173 na segunda e somando-se, obtemos:
displaymath119
ou:
$P^2 = \frac{4\pi^2}{G(m_1+m_2)}(r_1+r_2)^3$
Identificando-se a como a separação entre os corpos, a=(r1+r2), obtemos:
$ {K = \frac{4\pi^2}{G(m_1+m_2)}}$(1)

Isso nos diz que a "constante" K, definida como a razão $ \frac{P^2}{a^3}$, só é constante realmente se $ (m_1+m_2)$ permanece constante. Isso é o que acontece no caso dos planetas do sistema solar; como todos planetas têm massa muito menor do que a massa do Sol, já que o maior planeta, Júpiter, tem quase um milésimo da massa do Sol, a soma da massa do Sol com a massa do planeta é sempre aproximadamente a mesma, independente do planeta. Por essa razão Kepler, ao formular sua 3a lei, não percebeu a dependência com a massa.
Mas, se considerarmos sistemas onde os corpos principais são diferentes, então as razões $ \frac{P^2}{a^3}$ serão diferentes. Por exemplo, todos os satélites de Júpiter têm praticamente a mesma razão $ \frac{P^2}{a^3} = K_J$, que portanto podemos considerar constante entre elas, mas essa constante é diferente da razão $ \frac{P^2}{a^3}= K_\odot$ comum aos planetas do sistema solar. 

Determinação de massas

A terceira lei de Kepler na forma derivada por Newton pode se escrita como:
$ {(M + m) = \frac{4\pi^2}{G}\,\frac{a^3}{P^2}}$(3)

que nada mais é do que a última parte da equação (2), onde foi substituído $ K$ por $ \frac{{P}^2}{{a}^3}$.
No sistema internacional de unidades, G = (6,67428 ± 0,00067) × 10-11 N m2/kg2, e foi medida em laboratório pelo físico inglês Henry Cavendish (1731-1810) em 1798 [Philosophical Transactions (part II) 88, p.469-526 (21 Junho 1798)], usando uma balança de torsão. Mas, em astronomia, muitas vezes é mais conveniente adotar outras unidades que não as do sistema internacional. Por exemplo, em se tratando de sistemas nos quais o corpo maior é uma estrela, costuma-se determinar suas massas em unidades de massa do Sol, ou massas solares (massa do Sol = $ M_\odot$), seus períodos em anos e suas distâncias entre si em unidades astronômicas. Em sistemas em que o corpo maior é um planeta, é conveniente expressar sua massa em unidades de massas da Terra (massa da Terra = $ M_\oplus$), seu período em meses siderais e suas distâncias relativas em termos da distância entre Terra e Lua. Nestes sistemas particulares, a terceira lei de Kepler pode ser escrita como
$ M + m = \frac{a^3}{P^2}$
a qual é especialmente útil para a determinação de massas de corpos astronômicos. Note que esta fórmula só pode ser aplicada assim nestas unidades:
  1. massas em massas solares, período em anos e a em Unidades Astronômicas
  2. massas em massas terrestres, período em meses siderais (27,33 dias) e a em distância Terra-Lua
Por exemplo, se se observa o período orbital e a distância de um satélite a seu planeta, pode-se calcular a massa combinada do planeta e do satélite, em massas solares ou massas terrestres. Como a massa do satélite é muito pequena comparada com a massa do planeta, a massa calculada $ (m + M)$ é essencialmente a massa do planeta $ (M)$.
Da mesma forma, observando-se o tamanho da órbita de uma estrela dupla, e o seu período orbital, pode-se deduzir as massas das estrelas no sistema binário. De fato, pode-se usar a terceira lei de Kepler na forma revisada por Newton para estimar a massa de nossa Galáxia e de outras galáxias.

Exemplos de uso da 3a lei de Kepler

Exemplo 1
Qual é a massa do Sol? Sabemos que a Terra orbita o Sol em 1 ano. Podemos usar a relação
P2 = {\frac{4\pi^2}{G(m_1+m_2)}}$(r1 + r2)3
e lembrar que a = r1 + r2 = 1 UA = 1,5 ×1011 m. Reescrevendo:
(m1 + m2) = $ {\frac{4\pi^2 a^3}{GP^2}}$
Como G = 6, 67×10-11 m3 kg-1 s-2 e P= 1 ano = 3, 16×107 s, obtemos
mSol + mTerra = Msol = 2×1030 kg
Exemplo 2:
Deimos, o menor dos 2 satélites de Marte, tem período sideral de 1,262 dias e uma distância média ao centro de Marte de 23500 km. Qual a massa de Marte?
Podemos resolver este problema de diversas maneiras. Aqui vamos mostrar algumas delas.
  1. Calculando a massa de Marte diretamente em massas terrestres. (Vamos usar a notação: Marte = Ma; Deimos = D; Terra = $ \oplus$ e Lua = L).
    1. Uma maneira de resolver o problema é compararando os parâmetros da órbita de Deimos em torno de Marte com os parâmetros da órbita da Lua em torno da Terra, sem introduzir o valor da constante.Desprezando a massa de Deimos e da Lua frente às massas de seus respectivos planetas, podemos escrever:
      MMaKMa = M$ \oplus$K$ \oplus$
      sendo KMa = (PD)2/(aD)3e K$ \oplus$ = (PL)2/(aL)3
      Então:
      $ {\frac{{M_{Ma}}}{{M_{\oplus}}}}$ = $ {\frac{{{(P_{L})}^2 /{(a_{L})^3}}}{{ {(P_{D})}^2/({a_D)}^3}}}$ = $ \left(\vphantom{\frac{P_L}{P_D}}\right.$$ {\frac{{P_L}}{{P_D}}}$$ \left.\vphantom{\frac{P_L}{P_D}}\right)^{{2}}_{{}}$$ \left(\vphantom{\frac{a_D}{a_L}}\right.$$ {\frac{{a_D}}{{a_L}}}$$ \left.\vphantom{\frac{a_D}{a_L}}\right)^{{3}}_{{}}$
      Sabendo que:PL = 27, 32 dias
      PD = 1, 262 dias
      aL = 384 000 km
      aD = 23 500 km
      Temos:
      $ {\frac{{M_{Ma}}}{{M_{\oplus}}}}$ = $ \left(\vphantom{\frac{27,32\, {dias}}{1,262\,{dias}}}\right.$$ {\frac{{27,32\, {dias}}}{{1,262\,{dias}}}}$$ \left.\vphantom{\frac{27,32\, {dias}}{1,262\,{dias}}}\right)^{{2}}_{{}}$$ \left(\vphantom{\frac{23500\, {km}}{384000\,{km}}}\right.$$ {\frac{{23500\, {km}}}{{384000\,{km}}}}$$ \left.\vphantom{\frac{23500\, {km}}{384000\,{km}}}\right)^{{3}}_{{}}$ = 0, 1
      $ { M_{Ma} = 0,1\, M_{\oplus}}$
    2. Podemos chegar ao mesmo resultado usando a expressão formal da 3.a lei de Kepler (equação 1.3), escrevendo as distâncias em termos da distância Terra-Lua, as massas em massas terrestres, e os períodos em termos do período da Lua, ou seja, usando o sistema de unidades [distância T-L (dTL), massa terrestre (M$ \oplus$), mês sideral ( mes)]:
      MMa + mD $ \simeq$ MMa = $ {\frac{{4 \pi^2}}{{G}}}$$ {\frac{{{({a_D})}^3}}{{{({P_D})}^2}}}$
      Fazendo as transformações de unidades:PD = (1, 262/27, 32) meses = 4, 62×10-2 meses
      aD = (23500/384000) dTL = 6, 1×10-2 dTL
      G = 4$ \pi^{2}_{}$ (dTL)3/(M$ \oplus$ meses2) $ \Longrightarrow$ $ {\frac{{4 \pi^2}}{{G}}}$ = 1 (M$ \oplus$ meses2)/(dTL)3
      Temos:
      MMa = $ {\frac{{{\left({6,1 \times 10^{-2}}\right)}^3}}{{{\left({4,62 \times 10^{-2}}\right)}^2}}}$M$ \oplus$ $ \Longrightarrow$ $ {M_{Ma} = 0,1\, M_\oplus}$
  2. Calculando diretamente a massa de Marte em massas solares (M$ \odot$).
    1. Compararando o movimento de Deimos em torno de Marte com o movimento da Terra em torno do Sol:
      MMaKMa = M$ \odot$K$ \odot$
      onde K$ \odot$ = (P$ \oplus$)2/(a$ \oplus$)3e KMa = (PD)2/(aD)3
      Então:
      $ {\frac{{M_{Ma}}}{{M_{\odot}}}}$ = $ {\frac{{{(P_{\oplus})}^2 /{(a_{\oplus})^3}}}{{ {(P_{D})}^2/({a_D)}^3}}}$ = $ \left(\vphantom{\frac{P_\oplus}{P_D}}\right.$$ {\frac{{P_\oplus}}{{P_D}}}$$ \left.\vphantom{\frac{P_\oplus}{P_D}}\right)^{{2}}_{{}}$$ \left(\vphantom{\frac{a_D}{a_\oplus}}\right.$$ {\frac{{a_D}}{{a_\oplus}}}$$ \left.\vphantom{\frac{a_D}{a_\oplus}}\right)^{{3}}_{{}}$
      Sabendo que:P$ \oplus$ = 365, 25 dias
      PD = 1, 262 dias
      a$ \oplus$ = 1, 5×108 km = 1 UA
      aD = 2, 35×104 km
      Temos:
      $ {\frac{{M_{Ma}}}{{M_{\odot}}}}$ = $ \left(\vphantom{\frac{365,25\,{dias}}{1,262\,{dias}}}\right.$$ {\frac{{365,25\,{dias}}}{{1,262\,{dias}}}}$$ \left.\vphantom{\frac{365,25\,{dias}}{1,262\,{dias}}}\right)^{{2}}_{{}}$$ \left(\vphantom{\frac{2,35\times 10^4\,{km}}{1,5\times 10^8\,
{km}}}\right.$$ {\frac{{2,35\times 10^4\,{km}}}{{1,5\times 10^8\,
{km}}}}$$ \left.\vphantom{\frac{2,35\times 10^4\,{km}}{1,5\times 10^8\,
{km}}}\right)^{{3}}_{{}}$ = 3, 2×10-7
      $ { M_{Ma} = 3,2\times 10^{-7}\, M_\odot}$
    2. Usando a equação 1.3 e adotando o sistema de unidades [UA, M$ \odot$, ano].
      MMa + mD $ \simeq$ MMa = $ {\frac{{4 \pi^2}}{{G}}}$$ {\frac{{{a_{D}}^3}}{{{{P_D}^2}}}}$
      Fazendo a transformação de unidades:PD = (1, 262/365, 25) anos = 3, 46×10-3 anos
      aD = (2, 35×104/1, 5×108) UA = 1, 57×10-4 UA
      G = 4$ \pi^{2}_{}$ UA3/(M$ \odot$ ano2) $ \Longrightarrow$ 4$ \pi^{2}_{}$/G = 1 (M$ \odot$ ano2)/UA3
      Temos:
      MMa = $ {\frac{{{(1,57 \times 10^{-4})}^3}}{{{(3,46\times 10^{-3})^2}}}}$M$ \odot$ $ \Longrightarrow$ $ {M_{Ma}= 3,2 \times 10^{-7} M_\odot}$
  3. Calculando diretamente a massa de Marte em quilogramas, ou seja, usando os sistema internacional [m, kg, s]
    MMa + mD $ \simeq$ MMa = $ {\frac{{4 \pi^2}}{{G}}}$$ {\frac{{{({a_D})}^3}}{{{({P_D})}^2}}}$
    Escrevendo todos os dados em unidades do sistema internacional:
    PD = 1, 262 dias = 1, 09×105 s
    aD = 23 500 km = 2, 35×105 m
    G = 6, 67×10-11 m3/(kg s2)
    Temos:
    MMa = $ {\frac{{4 \pi^2}}{{6,67 \times 10^{-11}}}}$ $ {\frac{{kg\,s^2}}{{m^3}}}$$ {\frac{{{(2,35 \times 10^5 m)}^3}}{{{(1,09 \times 10^5 s) }^2}}}$
    $ {M_{Ma} = 6,4 \times 10^{23} \,{kg}}$
Exemplo 3: Duas estrelas idênticas ao Sol giram uma em torno da outra a uma distância de 0,1 UA. Qual o período de revolução das estrelas?
2M$ \odot$ = $ {\frac{{{(0,1 UA)}^3}}{{P^2}}}$ $ \Longrightarrow$ P = $ \sqrt{{0,001 \over 2}}$ = 0, 022 anos

Segunda Lei de Kepler = Conservação do momentum angular

phi
A área descrita por um corpo que se move d\phié dada por:
A = (1/2)rrd\phi
Em um tempo dt:
\frac{dA}{dt} = \frac{1}{2}r^2 \frac{d\phi}{dt}
O momentum angular é definido como:
$\ell=\vert\vec{r}\times m\vec{v}\vert=mr\frac{d\phi}{dt}r=mr^2\frac{d\phi}{d
   t}$
Portanto
$\frac{dA}{dt}=\frac{1}{2}\frac{\ell}{m}$
que é constante porque o momentum angular e a massa são constantes.

Um pouco mais de história:

HuygensChristiaan Huygens (1629-1695), na foto ao lado, que também construía seus telescópios, descobriu em 1655 o satélite Titan de Saturno, e que as "extensões laterais" de Saturno descobertas por Galileo em 1610 eram na verdade anéis ( De Saturni Luna Observatio Nova, 1656 e Sistema Saturnia, 1659). Em 1656 inventou o relógio de pêndulo, e o patenteou no ano seguinte. Em 1673 publicou o Oscillatorium Horologium, no qual explicou o movimento do pêndulo e descreveu a força centrípeta.
Em sua próprias palavras, Newton, como citado no prefácio do catálogo dos Portsmouth Papers, descreve como utilizou as Leis de Kepler para derivar a gravitação universal. "In the year 1665, I began to think of gravity extending to the orb of the Moon, and having found out how to estimate the force with which [a] globe revolving within a sphere presses the surface of the sphere, from Kepler's Rule of the periodical times being in a sesquialterate proportion of their distances from the centers of their orbs I deduced that the forces which keep the Planets in their orbs must [be] reciprocally as the squares of their distances from the centers about which they revolve: and thereby compared the force requisite to keep the Moon in her orb with the force of gravity at the surface of the earth, and found them answer pretty nearly."
telescopioEm 1668 Newton construiu um telescópio refletor, usado atualmente em todos os observatórios profissionais, com um espelho curvo ao invés de uma lente, usadas nostelescópios refratores de Galileo e Kepler. O telescópio de Galileo, construído em 1609 era composto de uma lente convexa e uma lenta côncava. Kepler, no livroDiopitrice, publicado em 1611, explicou que seria melhor construir um telescópio com duas lentes convexas, como se usa atualmente. A explicação de Newton da decomposição da luz branca, mostrando que a luz branca é a combinação de luz de cores diferentes, cada uma com seu indice de refração, é a base da espectroscopia.
© Kepler de Souza Oliveira Filho & Maria de Fátima Oliveira Saraiva 
Modificada em 6 abril 2010

Precessão do Eixo da Terra

Um efeito das forças diferenciais do Sol e da Lua na Terra, além das marés, é o movimento de precessão da Terra.
Precessao
O que causa a precessão?
A Terra não é perfeitamente esférica, mas sim achatada nos pólos e bojuda no equador. Seu diâmetro equatorial é cerca de 40 km maior do que o diâmetro polar. Além disso, o plano do equador terrestre e, portanto, o plano do bojo equatorial, está inclinado 23° 26' 21,418" em relação ao plano da eclíptica, que por sua vez está inclinado 5° 8' em relação ao plano da órbita da Lua.
Piao Precessao
Por causa disso, as forças diferenciais (que ficam mais importantes nos dois bojos da Terra) tendem não apenas a achatá-la ainda mais, mas também tendem a "endireitar" o seu eixo, alinhando-o com o eixo da eclíptica (veja a figura abaixo).
Mare
Puxao
Como a Terra está girando, o eixo da Terra não se alinha com o eixo da eclíptica, mas precessiona em torno dele, da mesma forma que um pião posto a girar precessiona em torno do eixo vertical ao solo.
No caso do pião, o seu peso gera um torque 
displaymath357
onde tex2html_wrap_inline367 é o vetor posição do centro de massa do pião em relação ao ponto de contato com o solo, e tex2html_wrap_inline369 é a força peso. Portanto o torque tex2html_wrap_inline371 é paralelo ao solo, perpendicular à força peso, e perpendicular ao momentum angular de rotação do pião. Em módulo, seu valor é N = mgr sen (θ), sendo θ o ângulo de inclinação do eixo do pião em relação à vertical ao solo.
Como o torque é dado por: 
displaymath358
o seu efeito é variar o momentum angular do pião. Essa variação é expressa por 
displaymath359
ou seja, tem a mesma direção de tex2html_wrap_inline371.
Como tex2html_wrap_inline377 e tex2html_wrap_inline371 são perpendiculares, o torque não altera o módulo de tex2html_wrap_inline377, mas apenas sua direção, fazendo-o precessionar em torno do eixo perpendicular ao solo.
Piao
No caso da Terra, as forças diferenciais gravitacionais da Lua e do Sol produzem um torque que tende a alinhar o eixo de rotação da Terra com o eixo da eclíptica, mas como esse torque é perpendicular ao momentum angular de rotação da Terra, seu efeito é mudar a direção do eixo de rotação, sem alterar sua inclinação.
Portanto os pólos celestes não ocupam uma posição fixa no céu: cada pólo celeste se move lentamente em torno do respectivo pólo da eclíptica, descrevendo uma circunferência em torno dele com raio de 23,5tex2html_wrap_inline363 . O tempo necessário para descrever uma volta completa é 25 770 anos. Atualmente o Pólo Celeste Norte está nas proximidades da estrela Polar, na constelação da Ursa Menor, mas isso não será sempre assim. Daqui a cerca de 13000 anos ele estará nas proximidades da estrela Vega, na constelação de Lira.
Precessao

Caminho aparente do Polo Norte celeste no céu


Polo Norte
Apesar de o movimento de precessão ser tão lento (apenas 50,290966'' por ano), ele foi percebido já pelo astrônomo grego Hiparco, no ano 129 a.C., ao comparar suas observações da posição da estrela Spica (α Virginis) com observações feitas por Timocharis de Alexandria (c.320-c.260 a.C.) em 273 a.C. Timocharis tinha medido que Spica estava a 172° do ponto vernal, mas Hiparco media somente 174°. Ele concluiu que o ponto vernal havia se movido 2 graus em 144 anos.
Precessao
O movimento de precessão da Terra é conhecido como precessão dos equinócios, porque, devido a ele, os equinócios (ponto vernal e ponto outonal) se deslocam ao longo da eclíptica no sentido de ir ao encontro do Sol (retrógrado em relação ao movimento da Terra em torno do Sol) 50,29"/ano.

Caminho aparente do Polo Sul celeste no céu


Polo Sul
O Sol leva 20 min para se mover 50tex2html_wrap_inline385 na eclíptica (na verdade a Terra leva 20 min para se mover 50tex2html_wrap_inline385 na sua órbita). Por causa disso, o ano tropical, que é medido em relação aos equinócios, é 20 min mais curto do que o ano sideral, medido em relação às estrelas.
A precessão não tem nenhum efeito importante sobre as estações, uma vez que o eixo da Terra mantém sua inclinação de 23,5tex2html_wrap_inline363 em relação ao eixo da eclíptica enquanto precessiona em torno dele. Como o ano do nosso calendário é baseado nos equinócios, a primavera continua iniciando em setembro no hemisfério sul, e em março no hemisfério norte. A única coisa que muda são as estrelas visíveis no céu durante a noite em diferentes épocas do ano. Por exemplo, atualmente Órion é uma constelação característica de dezembro, e o Escorpião é uma constelação característica de junho. Daqui a 13000 anos será o oposto.

Precessão do Equinócio


Precessao do Equador Precessao
Uma consequência da precessão é a variação da ascensão reta e da declinação das estrelas. Por isso os astrônomos, ao apontarem seus telescópios para o céu, devem corrigir as coordenadas tabeladas da estrela que irão observar pelo efeito de precessão acumulado desde a data em que as coordenadas foram registradas até a data da observação.
nutaçãoA próxima correção ao movimento chama-se nutação e trata-se da componente não circular (bamboleio) do movimento do pólo da Terra em torno do pólo da eclíptica, causada pelas variações na inclinação da órbita da Lua em relação à órbita da Terra em torno do Sol (de 18° 18' a 28° 36'). A principal contribuição da nutação na obliqüidade tem uma amplitude de 9,2025" e período de 18,613 anos, mas contribuições menores, como 0,57" com períodos de 182,62 dias, também estão presentes.
As forças diferenciais do Sol e da Lua sobre a Terra são mais complexas do que nossa aproximação pois os três corpos não são esféricos. Existe ainda a pequena contribuiçao das forças diferenciais causada pelos planetas sobre a Terra.
Por completeza, devido ao torque causado pela Lua, Sol, além dos outros planetas, por deslocamentos de matéria em diferentes partes do planeta, elasticidade do manto, achatamento da Terra, estrutura e propriedades da borda entre núcleo e manto, reologia (deformação) do núcleo, variabilidade dos oceanos e da atmosfera, a inclinação (obliqüidade) do eixo da Terra em relação ao eixo da eclíptica está decrescendo 0,46815 "/ano, ou
\epsilon = 23^\circ 26' 21,418'' - 0,46815''t - 0,0000059''t^2 + 0,00001813''t^3, t=(ano-2000)
Equinocio
A precessão do eixo de rotação da Terra é causada pelas perturbações da Lua e do Sol na Terra oblata. Ela faz que, na data de uma estação, a Terra esteja em uma posição diferente na órbita em torno do Sol, com o passar do tempo. A precessão do periélio da Terra é causada principalmente pelas perturbações gravitacionais dos planetas gigantes, Júpiter e Saturno sobre a órbita da Terra; estas perturbações fazem que a precessão em relação ao Sol tenha um período de cerca de 21000 a 23000 anos, e não no período de 25770 anos de precessão em relação às estrelas. Este efeito, da mudança da data de periélio, tem pouca influência nas estações, na atualidade. Entretanto, a excentricidade da órbita da Terra varia de quase 0 (0,017 atual) até cerca de 3 vezes a atual (0,07), em uma escala de tempo da ordem de 100 mil anos. 
excentricidade Obliquidade 
Variação da precessão do periélio e da excentricidade da órbita da Terra em torno do Sol, devido aos efeitos de muitos corpos do sistema solar. Um outro efeito de muitos corpos é a variação da obliqüidade da eclíptica, (de 22,1° a 24,5°) em torno do valor médio de 23,4° com um período da ordem de 41 mil anos, conhecido como o ciclo de Milankovitch, proposto pela astrônomo sérvio Milutin Milankovitch (1879-1958) em 1920, para explicar as idades do gelo. As evidências indicam que o ciclo climático mais importante é da ordem de 100 mil anos, o que coincide com o ciclo de excentricidade. Por outro lado, a variação em excentricidade, sozinha, constitui o fator que menos influencia a variação em insolação na Terra. Note que a idade do gelo se reinforça, pois quando a Terra está coberta de gelo ela reflete mais luz do Sol ao espaço, aumentando o esfriamento.
© Kepler de Souza Oliveira Filho & Maria de Fátima Oliveira Saraiva 
Modificada em 27 ago 2007

Corpos Menores do Sistema Solar

asteroides

Asteróides Ida

Asteróides são um grupo numeroso de pequenos corpos (planetas menores) com órbitas situadas na grande maioria no Cinturão Principal de Asteróides, entre as órbitas de Marte e Júpiter, a uma distância média da ordem de 2,8 unidades astronômicas (UA) do Sol. Mais de 12000 asteróides têm órbitas bem determinadas. Eles orbitam o Sol aproximadamente na mesma direção dos planetas (de oeste para leste) e a maioria no mesmo plano. A partir de 1992 foram descobertos vários asteróides além da órbita de Netuno, chamados objetos transnetunianos. A maioria desses objetos têm órbitas alinhadas com a eclíptica, formando um anel em torno do Sol, a uma distância média de 40 UA, chamado "Cinturão de Kuiper". Todos os asteróides são menores do que a Lua.

Asteróides do Cinturão Principal

O Cinturão de Asteróides principal contém asteróides com semi-eixo maior de 2,2 a 3,3 UA, correspondendo a períodos orbitais de 3,3 a 6 anos. Provavelmente mais de 90% de todos os asteróides estão neste Cinturão. Os grandes asteróides têm densidade da ordem de 2,5 g/cm3.
O maior asteróide do Cinturão principal, e o primeiro asteróide conhecido é Ceres, descoberto em 1801 pelo italiano Giuseppe Piazzi (1746-1826), com massa de um centésimo da massa da Lua, e diâmetro de 1000 km. Nessa época os astrônomos estavam procurando insistentemente um planeta que, de acordo com a lei de Titius-Bode, deveria existir entre as órbitas de Marte e Júpiter. Piazzi achou que tinha encontrado tal planeta, mas em seguida as descobertas de novos "pequenos planetas" nessa região se multiplicaram, e todos foram agrupados sob o nome de "asteróides". Pallas foi descoberto em 1802, por Heinrich Wilhelm Mattäus Olbers (1758-1840) e Juno em 1804 por Karl Ludwig Harding (1765-1834). 
O asteróide Ida, com 50 km de diâmetro, foi fotografado em 1993 pela sonda Galileo e foi então descoberto que ele possui um satélite, Dactyl, de 1,5 km de diâmetro, a 100 km de distância. Aproximadamente 10% dos asteróides têm satélites.

Asteróides do Cinturão de Kuiper

KuiperEste cinturão foi predito pelos cálculos do astrônomo irlandês Kenneth Essex Edgeworth (1880-1972) em 1949 e do holandês Gerard Peter Kuiper (1905-1973) em 1951. Esta teoria reapareceu no início dos anos 1970, quando simulações numéricas provaram que os cometas de longo período, provenientes da Nuvem de Oort, não podem ser capturados pelos planetas gigantes do sistema solar para transformarem-se em cometas de curto período. Desde a primeira descoberta de um asteróide transnetuniano por David C. Jewitt (1958-) & Jane X. Luu (1963-) em 1992, foram descobertos mais de 1000 asteródes do Cinturão de Kuiper, a maioria com cerca de 100 km de diâmetro. Eris com 1200 km de raio, Plutão com 1160 km, Caronte com 635 km, 2005 FY9 com cerca de 625 km, Haumea (2003 EL61) com cerca de 600 km, Sedna com cerca de 750 km, 2004 DW com cerca de 750 km, Quaoar, com 625 km de raio, Ixion, com 550 km, Varuna, com 450 km de raio e 2002 AW197, também com 450 km de raio, são alguns dos maiores asteróides do cinturão de Kuiper. Devem existir mais de 70 000 asteróides com mais de 100 km de diâmetro no cinturão de Kuiper.
O asteróide transnetuniano 2001 KX76 KX76, com 1200 km de diâmetro, desbancou Ceres como o maior asteróide conhecido até então. Na figura ao lado, as distâncias não estão em escala. 
O asteróide Quaoar foi descoberto em 2002 por Michael E. Brown e Chadwick Trujillo, do Caltech. Tem cerca de 1250 km de diâmetro e está localizado a cerca de 1,6 bilhões de km além de Plutão, no cinturão de Kuiper. Seu nome oficial é 2002 LM60, mas os descobridores o chamaram de Quaoar, ''força de criação'' na língua da tribo Tongva, os primeiros habitantes da bacia de Los Angeles. (2002 LM60 i=8.0° e=0.034 d=43.377UA)
Quaoar Quaoar
O asteróide Sedna, com diâmetro entre 1300 e 1600 km, com 3/4 do tamanho de Plutão, que tem 2240 km de diâmetro, estava a uma distância de 13 bilhões de km, além do cinturão de Kuiper, pois sua distância de periélio é de 76 UA. Seu nome oficial é 2003 VB12, descoberto por Michael E. Brown do Caltech, Chad Trujillo do Gemini Observatory e David Rabinowitz, de Yale (K03V12B i=11.932° e=0.85059 a=509.10733UA).
Sedna
Sedna
ErisEris (2003 UB313), um asteróide do cinturão de Kuiper (asteróide transnetuniano), descoberto em 2005 por Michael E. Brown (1965-), Chadwick A. Trujillo (1973-) e David Lincoln Rabinowitz (1960-), tem aproximadamente o mesmo tamanho que Plutão, conforme as medidas feitas com o Telescópio Espacial Hubble em 9 e 10 de dezembro de 2005. Seu diâmetro foi estimado em 2398 ± 97 km, comparado com 2288 km de Plutão. O asteróide Eris varia de distância ao Sol entre 38 UA e 98 UA (a=67,73 UA, P=557,44 anos), provavelmente foi deslocado de sua órbita por Netuno, e tem um plano de órbita bem inclinado em relação ao dos planetas (44°). 
GabrielleO asteróide 2003 UB313 tem um satélite, S/2005 (2003 UB313) 1, fotografado pela primeira vez por Michael E. Brown com telescópio de 10m do W.M. Keck Observatory. O planeta anão 2003 UB313recebeu em 13 set 2006 o nome oficial de Eris, a deusa da discórdia na mitologia grega. Seu satélite recebeu o nome Dysnomia, que na mitologia é o espírito demoníaco da falta de lei. Pela órbita de Dysnomia se mede que Eris é 27% mais massivo que Plutão. 
Até out/2012 existiam 176 satélites, 590 521 asteróides catalogados, e 3 160 cometas. 
Asteróides muito pequenos são chamados meteoróides.
Cores dos asteroides
Cores de 6612 asteróides imageados pelo Sloan Digital Sky Survey, dos 204 mil objetos com movimento detectados até 2004, de acordo com Zeljko Ivezic, Mario Juric, Robert Lupton, Serge Tabachnik e Tom Quinn. No eixo vertical, sin(i) é o seno do ângulo de inclinação da órbita em relação a eclíptica. As cores estão correlacionadas à composição química.

Planetas anões

Desde agosto de 2006 o sistema solar tem uma nova categoria de objetos, que são os planetas anões. Enquadram-se nessa categoria objetos que:
  1. estão em órbita em torno do Sol (como os planetas);
  2. têm forma determinada pela auto-gravidade, ou seja, são esféricos (como os planetas);
  3. não tem tamanho significativamente maior do que os outros objetos em sua vizinhança (ao contrário dos planetas).
Até o momento, os planetas anões do sistema solar são Éris, Plutão, Ceres, Haumea e Makemake.
PlutaoPlutão tem 5 satélites. Imagens de maio de 2005 obtidas pelo Telescópio Espacial Hubble mostraram, além do satélite Caronte descoberto em 1978, dois outros objetos menores orbitando Plutão. Em fevereiro de 2006 novas observações confirmaram estes dois novos satélites, chamados de Hydra (monstro com corpo de serpente e nove cabeças - S/2005 P1) e Nix (deusa da escuridão, S/2005 P2).

Meteoros Foto da reentrada da nave MIR sobre Fiji em 23 de março de 2001

Meteor carro
Meteoros são pequenos asteróides (meteoróides) que se chocam com a Terra. Ao penetrar na atmosfera da Terra geram calor por atrito com a atmosfera, deixando um rastro brilhante facilmente visível a olho nu, chamados de estrelas cadentes. O termo vem do grego meteoron, que significa fenômeno no céu. Existem aproximadamente 2000 asteróides com diâmetro maior de 1 km, que se aproximam da Terra, colidindo com uma taxa de aproximadamente 1 a cada 1 milhão de anos. 2 a 3 novos são descobertos por ano e suas órbitas são muitas vezes instáveis, devido a interações gravitacionais com os vários corpos (planetas e asteróides).

Chuvas de Meteoros

Quando a Terra cruza a órbita de um cometa, encontra poeira ejetada deste e uma chuva de meteoros ocorre.
Chuva

Meteoritos Meteorito ant

Meteoritos são meteoróides que atravessam a atmosfera da Terra sem serem completamente vaporizados, caindo ao solo. Do estudo dos meteoritos se pode aprender muito sobre o tipo de material a partir do qual se formaram os planetas interiores, uma vez que são fragmentos primitivos do sistema solar.
Existem 3 tipos de meteoritos: os metálicos, os rochosos, e os metálico-rochosos. Os rochosos são os mais abundantes, compreendendo 90% de todos meteoritos conhecidos. Um tipo de meteoritos rochosos são oscondritos carbonáceos, que representam o tipo mais antigo de meteoritos, com aproximadamente 4,5 bilhões de anos e parecem não ter sofrido qualquer alteração desde a época de sua formação. Os metálicos são compostos principalmente de ferro e níquel. Na Terra caem aproximadamente 25 milhões por dia, a grande maioria com algumas microgramas.
ALH84001Em agosto de 1996 cientistas da NASA revelaram evidências indiretas de possíveis fósseis microscópicos que poderiam ter se desenvolvido em Marte 3,6 bilhões de anos atrás, no meteorito marciano ALH84001. Sua denominação vem do fato de ter sido o meteorito número 001, colectado em 1984, na região chamada Allan Hills, na Antártica. Este meteorito, de 1,9 kilos, é um dos 30 meteoritos já coletados na Terra que acredita-se foram arrancados de Marte por colisões de asteróides. ALH84001 cristalizou-se no magma de Marte 4,5 bilhões de anos atrás, foi arrancado de Marte 16 milhões de anos atrás e caiu na Antártica 13 mil anos atrás. Ele mostra traços de hidrocarbonetos policíclicos aromáticos e depósitos minerais parecidos com os causados por nanobactérias na Terra e, portanto, indicando que poderia ter havido vida em Marte no passado remoto. Esta é a primeira evidência da possível existência de vida fora da Terra e levanta a questão de se a vida começou em outros pontos do Universo além da Terra, espontaneamente. Em outubro de 1996, cientistas ingleses descobriram traços de carbono orgânico em outro meteorito marciano, ETA79001, novamente uma evidência circunstancial para a qual vida é somente uma das possíveis interpretações. Entretanto muitos cientistas argumentam que os resíduos são na realidade partes de superfícies de cristais de piroxeno e carbonatos e não nanofósseis. A sonda Sojourner, da missão Mars Pathfinder de julho a setembro de 1997, comprovou que a composição química das rochas marcianas é de fato muito similar à composição dos meteoritos como o ALH84001.
rochas
Composição química de várias rochas e meteoritos. Scooby Doo, Yogi e Barnacle Bill são nomes de rochas de Marte estudadas pela sonda Pathfinder.

Impactos na Terra Barringer

A foto acima é da Meteor Crater, ou Cratera Barringer [Daniel Moreau Barringer (1860-1929), que demonstrou que a cratera era devido ao impacto de um meteorito], no Arizona, tem 1,2 km de diâmetro e 50 mil anos.
Duas vezes no século XX grandes objetos colidiram com a Terra. Em 30 de junho de 1908, um asteróide ou cometa de aproximadamente 100 mil toneladas explodiu na atmosfera perto do Rio Tunguska, na Sibéria, derrubando milhares de tex2html_wrap_inline20 de árvores e matando muitos animais.
Tunguska 
Foto a 20 km do centro da explosão na região do Rio Tunguska, no centro-norte da Sibéria, tirada em 1927 (20 anos depois da explosão).
O asteróide, rochoso, explodiu no ar e somente pequenos pedaços, encrustados nas árvores, foram encontrados. Simulações indicam que o asteróide deveria ter 30 a 60 metros de diâmetro e energia equivalente de 5 a 15 Mton TNT, uma bomba de hidrogênio (a primeira bomba de hidrogênio, chamada Bravo, foi testada em 1 de março de 1954, pelos americanos, no Atol de Bikini, e tinha 15 Mton TNT. A bomba de hidrogênio mais poderosa foi testada pelos russos e atingiu 50 Mton TNT). Várias testemunhas viram quando o meteorito/meteoro explodiu no ar.
O segundo impacto ocorreu em 12 de fevereiro de 1947, na cadeia de montanhas Sikhote-Alin, perto de Vladivostok, também na Sibéria. O impacto, causado por um asteróide de ferro-níquel de aproximadamente 100 toneladas que se rompeu no ar, foi visto por centenas de pessoas e deixou mais de 106 crateras, com tamanhos de até 28 m de diâmetro e 6 metros de profundidade. Mais de 28 toneladas em 9000 meteoritos metálicos foram recuperados. O maior pedaço pesa 1745 kilos.
Sikhote-Alin
Esta foto mostra a recuperação do maior pedaço do meteorito de Sikhote-Alin, de 1745 kg, sendo tirado de sua cratera por um caminhão. Mais de 9000 pedaços, compondo 28 toneladas foram recuperados.
Em 18 de janeiro de 2000, um meteoro explodiu sobre o território de Yukon, no Canadá, gerando uma bola de fogo brilhante detectada por satélites de defesa e também por sismógrafos. A energia liberada foi da ordem de 2 a 3 kton TNT. Denominado Tagish Lake, em referência ao local da queda, foram recuperados alguns pedaços, 850 g, do meteoro que deve ter tido 200 toneladas e 5 m de diâmetro.
impactos
A cada dia a Terra é atingida por corpos interplanetários, a maioria deles microscópicos, com uma massa acumulada de 10 000 toneladas. 
dino
chicxlubA extinção dos dinossauros, 65 milhões de anos atrás, é consistente com um impacto de um asteróide ou cometa de mais de 10 km de diâmetro, que abriu uma cratera de 200 km de diâmetro perto de Chicxulub, na península de Yucatan, no México. O impacto liberou uma energia equivalente a 5 bilhões de bombas atômicas como a usada sobre Hiroshima em 1945. A imagem mostra as variações gravimétricas do local, já que parte está sob o oceano. Outras crateras com a mesma idade têm sido descobertas, como a cratera Boltysh, de 24 km de largura na Ucrânia e a cratera Silverpit, no fundo do Mar do Norte na costa da Inglaterra, com 19 km de largura. A proposta de que a grande extinção de organismos terrestres e marinhos, vertebrados e invertebrados que ocorreu há 65 milhões de anos (transição do período Cretáceo para o Terciário) tem origem num grande impacto é do físico americano Luis Walter Alvarez (1911-1988), ganhador do prêmio Nobel em 1968 por seus estudos de partículas sub-atômicas, e seu filho Walter L. Alvarez (1940-), geólogo americano, que notaram que a extinção se deu por alterações climáticas que atingiram toda a Terra, com um esfriamento na superfície e pela existência de uma fina camada de argila com uma alta taxa de irídio (um metal raro, similar à platina), com uma concentração 30 vezes maior do que a média de 0,3 partes por bilhão, em mais de cem partes do globo nesta época, consistente com uma grande nuvem de pó que se espalhou por todo o planeta, cobrindo a luz do Sol. Com a queda da fotossíntese, as plantas morreriam e os dinossauros morreriam por falta de alimentos. Um evento similar poderia ser uma grande explosão vulcânica, mas isto não explicaria a deposição de irídio, nem a existência da cratera de Chicxulub. Irídio é encontrado no interior da Terra, mas os asteróides são mais ricos em irídio do que a crosta da Terra.
Outros grandes impactos sobre a Terra podem ter causado o rompimento do grande supercontinente, Pangea, 250 milhões de anos atrás, e outro há 13 mil anos, cerca de 10 mil a.C., no fim do último período glacial, quando os mamutes desapareceram.

Satélites ganimedes

Em geral, o número de satélites de um planeta está associado à sua massa. O maior satélite do sistema solar é Ganimedes, um dos quatro satélites galileanos de Júpiter, com raio de 2631 Km. O segundo é Titan, de Saturno, com 2575 Km de raio (5150 Km de diâmetro). Ambos são maiores do que o planeta Mercúrio, que tem 2439 km de raio (4878 km de diâmetro). Note que a Lua, com 3475 km de diâmetro, é maior do que Plutão, que tem 2350 km de diâmetro.
NomeDiâmetroMassaDensidade
 (km)(Lua=1)(g/cm3)
Ganimedes52802,01,9
Titan51501,91,9
Calisto48201,51,9
Io36401,23,5
Lua34751,03,3
Europa31300,73,0
Tritão27100,32,1
Os três maiores satélites têm a mesma densidade e aproximadamente o mesmo tamanho e, portanto, devem ter a mesma composição química; provavelmente têm um interior estratificado, com um núcleo rochoso do tamanho da Lua cercado por uma camada espessa de gelo ou possivelmente água. TitanTitan apresenta a notável característica de possuir uma atmosfera densa, rica em compostos de carbono e metano. Titan, como Vênus, é cercado por uma camada opaca de nuvens.
A maioria dos satélites revolve em torno do respectivo planeta no sentido de oeste para leste e a maioria tem órbita aproximadamente no plano equatorial de seu planeta.
pastoresSatélites pastoreiros do anél F de Saturno, Prometeu (o interno, 145×85×62 km) e Pandora (114×84×62 km), descobertos em 1980 pela sonda Voyager. O mecanismo de "pastoreamento", em linhas gerais, funciona assim: a lua pastoreira mais interna tem velocidade orbital maior do que a das partículas do anel, e a luz pastoreira mais externa tem velocidade orbital menor (movimento kepleriano). Quando a lua mais interna ultrapassa as partículas em um determinado ponto do anel, lhes tranfere momentum angular, fazendo com que elas espiralem para uma órbita mais externa. Por outro lado, as partículas do anel externo, ao ultrapassarem a lua pastoreira externa, transferem para ela parte de seu momentum angular, indo para uma órbita mais interna. Dessa maneira as partículas ficam confinadas em um anel estreito e bem definido. 

Anéis aneis

Os quatro planetas jovianos apresentam um sistema de anéis, constituídos por bilhões de pequenas partículas orbitando muito próximo de seu planeta. Nos quatro planetas, os anéis estão dentro do limite de Roche e devem ter se formado pela quebra de um satélite ou a partir de material que nunca se aglomerou para formar um satélite. Saturno é, de longe, o que possui anéis mais espetaculares. Eles são constituídos principalmente por pequenas partículas de gelo, que refletem muito bem a luz. Já os anéis de Urano, Netuno e Júpiter (nesta ordem de massa constituinte), são feitos de partículas escuras, sendo invisíveis da Terra. A massa total dosanéis de Saturno é menor do que 3 milionésimos da massa de Saturno. Já em 1857, James Clerk Maxwell (1831-1879) demonstrou que os anéis só poderiam permanecer em órbitas estáveis se fossem constituídos de pequenas partículas.
Aneis Sat aneis
Anéis de Saturno. As divisões dos anéis de Saturno são causadas por ressonâncias com os satélites. Por exemplo, a maior divisão é causada por uma ressonância 2:1 com Mimes.

Jupiter Urano
Anéis de poeira em torno de Júpiter e Urano.

Cometas Giotto West

Os cometas constituem outro conjunto de pequenos corpos orbitando o Sistema Solar. Suas órbitas são elipses muito alongadas. Eles são muito pequenos e fracos para serem vistos mesmo com um telescópio, a não ser quando se aproximam do Sol. Nessas ocasiões eles desenvolvem caudas brilhantes que algumas vezes podem ser vistas mesmo a olho nu.
Borrelly Borrelly 1
Imagens do cometa periódico Borrelly (19P) obtidas pela sonda Deep Space 1. A foto do núcleo foi obtida quando a nave passou a 3417 km dele. O cometa tem um período de 6,8 anos e um núcleo com 8 km. Lançada em outubro de 1998, a Deep Space 1 completou seu projeto principal de estudar a propulsão iônica antes de fotografar o cometa.
Os cometas são feitos de uma mistura de gelo e poeira, como uma bola de gelo sujo, segundo o modelo proposto por Fred Lawrence Whipple (1906-2004) em 1950. À medida que eles se aproximam do Sol, parte do gelo derrete, formando uma grande nuvem de gás e poeira ao redor do cometa, chamada coma, com diâmetro da ordem de 100 mil km. A parte sólida e gelada no interior é o núcleo e normalmente tem 1 a 10 km de diâmetro. O calor e o vento solar proveniente do Sol sopram o gás e a poeira da coma formando a cauda. Essa cauda sempre aponta na direção oposta à do Sol e pode estender-se até 1 UA de comprimento.
Cometa
Normalmente podem ser observadas duas caudas, uma cauda de gás e uma cauda de poeira. A cauda de poeira é mais larga, curva e amarela porque brilha devido à reflexão da luz solar na poeira. A poeira segue a órbita kepleriana, isto é, quanto mais distante do Sol mais devagar andam as partículas. A cauda de gás é reta e azul, pois brilha devido à emissão do monóxido de carbono ionizado (plasma), que fica em tex2html_wrap_inline27. O gás expelido do cometa é ionizado pela radiação solar e segue as partículas ionizadas expelidas pelo Sol, chamadas de vento solar. A cauda de hidrogênio, somente visível em ondas de rádio, é a mais extensa; por ser composta das partículas mais leves, é a mais afetada pela pressão de radiação.
Algumas vezes é observada também uma anti-cauda, isto é, uma cauda na direção do Sol. Essa cauda é um efeito de perspectiva, causado por partículas grandes (0,1 a 1 mm de diâmetro), ejetadas do núcleo, que não são arrastadas pela pressão de radiação do Sol, permanecendo na órbita.
caudas
Giotto Giotto 
Foto do núcleo irregular do Cometa Halley obtida pela nave européia Giotto a 1000 km do núcleo do cometa, que tem 13 por 8 km, densidade próxima a 1,0 g/cm3 e massa de 6 × 1014 kg.
Edmund HalleyEdmund Halley (1656-1742), astrônomo britânico amigo de Isaac Newton, foi o primeiro a mostrar que os cometas vistos em 1531, 1607 e 1682 eram na verdade o mesmo cometa e, portanto, periódico, que é desde então chamado de Cometa Halley.
Se um corpo pequeno apresenta uma atmosfera volátil visível, chama-se cometa. Se não, chama-se asteróide. 
Shoemaker-Levy Jupiter 
Em julho de 1994 o cometa Shoemaker-Levy 9, descoberto por Carolyn Jean Spellmann Shoemaker (1929-), Eugene Merle Shoemaker (1928-1997) e David H. Levy (1948-) em 24 de março de 1993, e que tinha se fragmentado em mais de 21 pedaços, os maiores de até 1 km, colidiu com Júpiter, explodindo nas nuvens de amômia da atmosfera de Júpiter. A mancha mais brilhante, no canto superior direito da imagem infra-vermelha de Júpiter, é do satélite Io. As manchas na parte inferior foram causadas pelos impactos.

O cometa McNaugth (C/2006 P1) foi o mais brilhante dos últimos 40 anos, atingindo magnitude aparente de -5 (Venus chega a -4). Ele foi descoberto pelo astronônomo Robert H. McNaught em 7 de agosto de 2006, a partir do Siding Spring Observatory, na Austrália. FatimaFoto tirada por Maria de Fátima Oliveira Saraiva em Porto Alegre, no dia 18/01/2007, ao anoitecer. 
Hale-BoppNo início de 1997, o Cometa Hale-Bopp foi visível a olho nu em quase todo o planeta. 
Acredita-se que os cometas são corpos primitivos, presumivelmente sobras da formação do sistema solar, que se deu pelo colapso de uma nuvem molecular gigante.
 Oort Jan Hendrik Oort (1900-1989)
Nuvem de OortEsses corpos formariam uma vasta nuvem circundando o Sistema Solar, em órbitas com afélios a uma distância de tex2html_wrap_inline29 50 000 UA do Sol: a"Nuvem de Oort". Haveria tex2html_wrap_inline29 100 bilhões de núcleos cometários nessa nuvem. Eventualmente, a interação gravitacional com uma estrela próxima perturbaria a órbita de algum cometa, fazendo com que ele fosse lançado para as partes mais internas do sistema solar. Uma vez que o cometa é desviado para o interior do sistema solar, ele não sobrevive mais do que 1000 passagens periélicas antes de perder todos os seus elementos voláteis. 
Um outro cinturão de restos gelados é chamado de Cinturão de Kuiper e, ao contrário da Nuvem de Oort, está no plano do sistema solar, de 30 a 50 UA do Sol, portanto logo após a órbita de Netuno.

Luz Zodiacal

A reflexão da luz solar na poeira cometária, concentrada na região do zodíaco perto do Sol, pode ser vista em locais muito escuros, algumas horas após o pôr do Sol, e antes do nascer.

Asteróides Próximos à Terra

Os asteróides próximos à Terra (Near Earth Asteroides) são aqueles que têm órbitas que os aproximam da Terra e portanto têm maior chance de colidir com a Terra. A maioria têm uma probabilidade de 0,5% de colidir com a Terra no próximo um milhão de anos. O número total de asteróides maiores que um km é da ordem de 1000 a 2000, que corresponde a uma probabilidade de 1% de colisão no próximo milênio.
Asteroides
A atmosfera da Terra não oferece proteção para objetos maiores que 100 m de diâmetro. Corpos maiores que 1 km causam efeitos globais na Terra. Mesmo que caiam nos oceanos, as ondas gigantescas que causariam destruiriam as cidades costeiras.
NEA 
Número de asteróides que passam próximos à Terra em relação a seu diâmetro, conforme cálculos de David Rabinowitz et al. (2000), Nature, 403, 165. Os círculos abertos mostram as observações. Os quadrados e triângulos mostram a amostra corrigida pela dificuldade de observar os mais fracos.

Efeito Yarkovsky

Além das alterações nas órbitas dos asteróides e cometas causadas por interações gravitacionais entre eles e com os planetas, o Efeito Yarkovsky, proposto em 1900 pelo engenheiro russo Ivan Osipovich Yarkovsky (1844-1902) e observado no asteróide 6489 Golevka por Steven R. Chesley, Steven J. Ostro, David Vokrouhlický, David Capek, Jon D. Giorgini, Michael C. Nolan, Jean-Luc Margot; Alice A. Hine, Lance A. M. Benner e Alan B. Chamberlin, ["Direct Detection of the Yarkovsky Effect via Radar Ranging to Asteroid 6489 Golevka", Science 302, 1739-1742 (2003)], explica o deslocamento gradual pela reemissão assimétrica (maior no lado não iluminado) da luz absorvida do Sol. Outra fonte de deslocamento é a emissão de jatos nos cometas.

Lixo Espacial

Lixo

© Kepler de Souza Oliveira Filho & Maria de Fátima Oliveira Saraiva 
Modificada em 1 out 2012

O Sol, nossa fonte de luz e de vida, é a estrela mais próxima de nós e a que melhor conhecemos. Basicamente, é uma enorme esfera de gás incandescente, em cujo núcleo acontece a geração de energia através dereações termo-nucleares. O estudo do Sol serve de base para o conhecimento das outras estrelas, que de tão distantes aparecem para nós como meros pontos de luz.
halpha
Foto do Sol na linha Hα do hidrogênio, obtida pelo National Solar Observatory, EUA. Os filamentos escuros são proeminências.
Raio X 10384A
Apesar de parecer tão grande e brilhante (seu brilho aparente é 200 bilhões de vezes maior do que o de Sírius, a estrela mais brilhante do céu noturno), na verdade o Sol é uma estrela bastante comum. Suas principais características são:
MassaM = 1,989 x 1030 kg
RaioR = 695 500 km = 109 RTerra
Densidade média$\rho$ = 1409 kg/m3
Densidade central$\rho_c$ = 160 000 kg/m3
Distância1 UA = 149 600 000 km
LuminosidadeL=3,9×1026 watts=3,9×1033 ergs/s
Temperatura efetivaTef = 5785 K
Temperatura centralTc = 15 000 000 K
Magnitude absoluta bolométricaMbol = 4,72
Magnitude absoluta visualMV = 4,79
Tipo espectral e classe de luminosidadeG2 V
Índices de corB-V=0,62
 U-B=0,10
Composição química principal (No)Hidrogênio = 91,2 %
 Hélio = 8,7%
 Oxigênio = 0,078 %
 Carbono = 0,043 %
Período rotacional no equador25,67 d
                na latitude 75°33,40 d
Algumas das características listadas acima são obtidas mais ou menos diretamente. Por exemplo, a distância do Sol, chamada Unidade Astronômica, é medida por ondas de radar direcionadas a um planeta em uma posição favorável de sua órbita (por exemplo Vênus, quando Terra e Vênus estão do mesmo lado do Sol e alinhados com ele). O tamanho do Sol é obtido a partir de seu tamanho angular e da sua distância. A massado Sol pode ser medida a partir do movimento orbital da Terra (ou de qualquer outro planeta) usando a terceira lei de Kepler. Sabendo então sua massa e seu raio temos a densidade média do Sol.
Outras características são determinadas a partir de modelos. Por exemplo, a equação de equilíbrio hidrostático, permite determinar a pressão e a temperatura no centro do Sol, supondo que elas têm que ser extremamente altas para suportar o peso das camadas mais externas.
A primeira determinação quantitativa da composição química da atmosfera solar foi obtida em 1929 por Henry Norris Russel (1877-1957), publicada no Astrophysical Journal, 70, 11, baseada em estimativas a olho das intensidades das linhas no espectro solar.

Estrutura do Sol

Wendy Carlos + SOHO
Combinação de uma foto tirada por Wendy Carlos © 1996-2007 Serendip LLC, do eclipse solar de 1999 na Romênia, com uma imagem ultravioleta tirada pelo satélite SOHO/NASA-ESA.
estrutsol Zonas
O modelo representado na figura mostra as principais regiões do Sol. A fotosfera, com cerca de 330 km de espessura e temperatura de 5785 K, é a camada visível do Sol. A palavra vem do grego: photo = luz. conveccaoLogo abaixo da fotosfera se localiza a zona convectiva, se estendendo por cerca de 15% do raio solar. Na zona convectiva o transporte de energia é pelo movimento das parcelas de gás (transporte mecânico). Abaixo dessa camada está a zona radiativa, onde a energia flui por radiação, isto é, não há movimento das parcelas de gás, só transporte de fótons. O núcleo, com temperatura de cerca de 15 milhões de graus Kelvin, é a região onde a energia é produzida, por reações termo-nucleares. Acromosfera é a camada da atmosfera solar logo acima da fotosfera e tem baixa densidade. A palavra vem do grego: cromo = cor. Ela tem cor avermelhada e é visível durante os eclipses solares, logo antes e após a totalidade. Estende-se por 10 mil km acima da fotosfera e a temperatura cresce da base para o topo, tendo um valor médio de 15 mil K. Ainda acima da cromosfera se encontra a coroa, também visível durante os eclipses totais. A coroa se estende por cerca de dois raios solares e tem densidade ainda mais baixa que a cromosfera.

A fotosfera

Foto do Sol na linha de 584 Å do hélio (HeI), obtida pelo satélite SOHO (The Solar and Heliospheric Observatory), da ESA/NASA
sol584
A fotosfera do Sol tem a aparência da superfície de um líquido em ebulição, cheia de bolhas, ou grânulos. Este fenômeno é chamado de granulação fotosférica. Os grânulos têm em torno de 5000 km de diâmetro e duram cerca de 10 min cada. Eles marcam os topos das colunas convectivas de gás quente, que se forma na zona convectiva, logo abaixo da fotosfera. Nestas colunas, o gás quente das camadas interiores sobe e deposita a energia térmica nas camadas superiores. Ao perder o calor, aumenta de densidade e desce para as camadas mais internas. As regiões escuras entre os grânulos são regiões onde o gás mais frio e mais denso está indo para baixo.
conveccao
As células de conveção têm cerca de 5000 km e se movimentam em escalas de 10 minutos
Foto do Sol em luz branca, mostrando algumas manchas solares
sunspot
No modelo de Jorge E. Vernazza, Eugene H. Avrett & Rudolf Loeser (1973, Astrophysical Journal, 184, 605), a maior parte do espectro visível do Sol tem origem em uma camada com cerca de 1000 km de extensão, e a temperatura varia de 9000 K a 4000 K. A gravidade superficial do Sol é de g=2,738×104cm/s2=273,8 m/s2 (log g=4,44 em cgs).
O fenômeno fotosférico mais notável é o das manchas solares, regiões irregulares que aparecem mais escuras do que a fotosfera circundante e que muitas vezes podem ser observadas mesmo a olho nu, embora olhar diretamente para o Sol só não é perigoso quando ele está no horizonte. As manchas foram registradas na China já no ano 28 a.C., mas seu estudo científico começou com o uso do telescópio, sendo observadas (por projeção da imagem do Sol) por Galileo, Thomas Harriot (1560-1621) já em 1610, por Johannes (1587-1616) e David Fabricius (1564-1617) e por Christoph Scheiner (1575-1650) em 1611. São constituídas de duas partes: a umbra, parte central mais escura, com temperaturas em torno de 3800 K, e a penumbra, região um pouco mais clara e com estrutura radial em torno da umbra. As manchas são mais frias porque o campo magnético local impede a convecção e, portanto, que o calor das partes mais internas suba à fotosfera. As manchas solares tendem a se formar em grupos e estão associadas a intensos campos magnéticos no Sol.
Manchas Carpet Campo Magnetico
As manchas solares seguem um ciclo de 11 anos em que o número de manchas varia entre máximos e mínimos, descoberto em 1843 pelo astrônomo amador alemão Samuel Heinrich Schwabe (1789-1875).
ciclo
No gráfico abaixo, está registrado o número médio mensal de manchas e o ano.
Manchas
Distribuição de temperatura e densidade na atmosfera do Sol.
cromosol


A cromosfera

EspiculasEspículas, produzidas pelo campo magnético e energia mecânica na fotosfera, aquecem a cromosfera. Elas são aproximadamente cilíndricas, com cerca de 700 km de extensão e 7000 km de altura, e duram entre 5 e 15 minutos.
A cromosfera do Sol normalmente não é visível, porque sua radiação é muito mais fraca do que a da fotosfera. Ela pode ser observada, no entanto, durante os eclipses, quando a Lua esconde o disco da fotosfera.
Foto do eclipse total de 4 de novembro de 1994, obtida pelos autores em Santa Catarina, Brasil, mostrando a cromosfera e, principalmente, a coroa.
sol6
EspectroNo capítulo de espectroscopia, detalha-se que o Sol tem um espectro contínuo com linhas escuras (de absorção). Esse espectro é o da fotosfera. 
coroaNo entanto, olhando a borda do Sol com um espectroscópio, durante um eclipse, temos a oportunidade de ver por alguns instantes o espectro da cromosfera, feito de linhas brilhantes, que mostram que a cromosfera é constituída de gases quentes que emitem luz na forma de linhas de emissão. Essas linhas são difíceis de serem observadas contra a luz brilhante da fotosfera, por isso não as vemos no espectro solar normal.
Uma das linhas cromosféricas de emissão mais brilhantes é a linha de Balmer Hα, no comprimento de onda 6563 Å, que no espectro solar normal, dominado pela fotosfera, aparece em absorção. A linha Hα está no vermelho, por isso a cromosfera tem cor avermelhada.
Uma fotografia do Sol tirada com filtro Hα deixa passar a luz da cromosfera e permite ver que a cromosfera tem uma aparência ondulada devido à presença de estruturas chamadas espículas, jatos de gás que se elevam a até 10 mil km acima da borda da cromosfera e duram poucos minutos. As espículas, observadas contra o disco do Sol, aparecem como filamentos escuros; nas bordas, aparecem como labaredas brilhantes.
A temperatura na cromosfera varia de 4300 K na base, a mais de 40 000 K a 2500 km de altura. Esse aquecimento da cromosfera deve ter uma fonte de energia que não são os fótons produzidos no interior do Sol, pois se a energia fosse gerada por fótons a cromosfera deveria ser mais fria do que fotosfera, e não mais quente. Atualmente se pensa que a fonte de energia são campos magnéticos variáveis formados na fotosfera e transportados para a coroa por correntes elétricas, deixando parte de sua energia na cromosfera.
ultravioleta


A Coroa

Foto do Sol obtida pela estação espacial Skylab da NASA em 19 de dezembro de 1973, com um dos mais espectacular flares solares já gravados. A proeminência abrange mais de 588 000 km. Os pólos solares apresentam pouca super-granulação e um tom mais escuro do que o centro do disco.
sun
A cromosfera gradualmente se funde na coroa, a camada mais externa e mais rarefeita da atmosfera do Sol. A coroa também é melhor observada durante eclipses, pois apesar de ter um brilho equivalente ao da lua cheia, ela fica obscurecida quando a fotosfera é visível.
O espectro da coroa mostra linhas muito brilhantes que, até 1940, não eram conhecidas. Atualmente sabemos que elas são produzidas por átomos de ferro, níquel, neônio e cálcio altamente ionizados e não por algum elemento estranho, como anteriormente foi pensado. O fato de existirem esses elementos várias vezes ionizados na coroa implica que sua temperatura deve ser muito alta, pois é necessária muita energia para arrancar muitos elétrons de um átomo. A coroa deve ter uma temperatura em torno de 1 milhão de graus Kelvin.
trace 
Imagem obtida pelo satélite Transition Region and Coronal Explorer (TRACE), da NASA, mostrando que o gás nos arcos se move balisticamente e é aquecido a partir da base dos mesmos.

A elevação da temperatura na coroa deve ter origem no mesmo processo físico que aquece a cromosfera: transporte de energia por correntes elétricas induzidas por campos magnéticos variáveis.
Da coroa emana o vento solar, um fluxo contínuo de partículas emitidas da coroa que acarretam uma perda de massa por parte do sol em torno de $10^{-13} M_\odot$ por ano. O vento solar que atinge a Terra (aproximadamente 7 prótons/cm3 viajando a cerca de 400 km/s) é capturado pelo campo magnético da Terra, formando o cinturão de Van Allen, na magnetosfera terrestre.
vanallen trajetoria
Este cinturão, descoberto pelo físico americano James Alfred Van Allen (1914-2006) em 1958, só permite que as partículas carregadas do vento solar entrem na atmosfera da Terra pelos pólos, causando as auroras,fenômenos luminosos de excitação e des-excitação dos átomos de oxigênio e nitrogênio.
auroras
SDO SDO 
Imagens do Observatório da Dinâmica Solar, da NASA, em 30 março e 8 de abril de 2010. A imagem do disco completo é uma combinação de três imagens.
Além das partículas do vento solar, existem grandes ejeções coronais de massa associadas às proeminências, que quando atingem a Terra causam danos às redes elétricas e aos satélites. O penúltimo máximo do ciclo de 11 anos ocorreu em 1989 e logo após uma grande proeminência solar, a rede elétrica na província de Quebec, no Canadá, sofreu uma grande sobrecarga elétrica que causou vários danos aos equipamentos. Algumas regiões da província ficaram até duas semanas sem luz elétrica. Em 1994, o satélite de comunicações E2 teve alguns circuitos queimados por uma sobrecarga estática, também associada com a ejeção de uma nuvem de plasma solar. O máximo do último ciclo solar ocorreu em 15 de fevereiro de 2001, quando o campo magético solar reverteu de polaridade. Embora ainda estejamos no início deste ciclo solar, com poucas tempestades, em 5 de dezembro de 2006 ocorreu um flare no Sol, com índice X9, o mais alto, que chegou a danificar alguns píxeis da câmara do GOES 13, e saturou todos os satélites GPS que estavam do lado iluminado da Terra.2006
Borboleta
Diagrama borboleta mostrando a variação do campo magnético do Sol com o tempo e a reversão do campo com o período de 11 anos.
Sol Max
Imagem do Sol em 1710 Å, mostrando o Sol no ano de 1996, Sol mínimo, e perto do máximo, em 1999.
cme cme
Ejeção Coronal de Massa em 14 de setembro de 1999, fotografada pelo SOHO em 3040 Å.
SolTerra
magentosfera Normalmente as partículas carregadas são desviadas pelo campo magnético da Terra para o Cinturão de Van Allen, e somente chegam à Terra próximas aos pólos. Entretanto o campo magnético terrestre não é um simples dipolo e existe uma depressão no campo, no Atlântico Sul, que faz com que partículas carregadas também cheguem ao solo na região conhecida como Anomalia Geomagnética do Atlântico Sul.
saas
Anomalia geomagnética do Atlântico Sul: a região vermelha representa alto fluxo de elétrons com energia acima de 30 KeV próximo ao solo.
saa2s
Anomalia geomagnética do Atlântico Sul: cada ponto branco ou amarelo marca a posição de um satélite onde ocorreu defeito na memória do computador.
A Anomalia Geomagnética do Atlântico Sul é uma mancha de fluxo invertido, isto é, uma mancha com fluxo magnético direcionado para dentro no hemisfério de fluxo direcionado para fora. Existem outras manchas menores, tanto no hemisfério norte quanto no hemisfério sul, de acordo com as medições de campo magnético pelos satélites Magsat em 1980 e Ørsted em 2000.
estrutura Terra campo magnetico
Estas reversões de fluxo são similares às que causam as manchas solares: o fluxo de material líquido e ionizado no núcleo da Terra é convectivo, turbulento e distorcido também por rotação diferencial do núcleo externo, líquido (2900 km a 5100 km de profundidade), sobre o núcleo sólido interno, cristalizado e que libera calor latente na cristalização das camadas externas e de separação de elementos menos densos, como sultefo de ferro e óxido de ferro. Estas manchas mudam de tamanho com o tempo e, quando aumentam até dominar o hemisfério, causam a reversão do campo magnético da Terra. A última reversão ocorreu há 780 mil anos.
28 Out 2003Quando manchas solares de polaridades magnéticas opostas colidem, há cancelamento do campo magnético que pode provocar um flare, um aumento significativo da emissão de radiação eletromagnética no local, principalmente no ultravioleta e raio-X. Se esta radiação atingir a Terra, há um aumento na fotoioniozação da atmosfera, com um aumento súbito no número de elétrons livres, que perturbam as ondas de rádio, inclusive as usadas pelo GPS.
Goes 8 
Aumento do fluxo de raios-X detectado pelo satélite Goes 8 após um grande flare solar.
As ejeções coronais de massas são bolhas de gás quente (plasma), de cerca de 1 a 10 bilhões de toneladas, aquecidas pelos campos magnéticos do Sol. Os campos magnéticos do Sol se enrolam devido ao movimento turbulento de convecção mas também devido à rotação diferencial, que faz com que o equador solar complete uma volta em 25 dias, enquanto que as regiões próximas aos pólos completam uma volta em 36 dias. A desconexão do campo magnético solar pode ocorrer em alguns minutos e tem uma energia equivalente a milhares de bombas atômicas.
O vento solar, composto de partículas carregadas desprendidas da coroa solar, viaja a aproximadente 250 a 1000 km/s, provocando as auroras, normalmente entre 60 e 80° de latitude. Entretanto as auroras podem ocorrer também em baixas latitudes, como por exemplo a observada em 1909 em Singapura, no equador geomagnético.
As auroras foram observadas na antiguidade pelos gregos e chineses, mas somente em 1896 o físico norueguês Kristian Birkeland (1867-1917) deduziu que fluxos de elétrons provenientes do Sol eram canalizados pelo campo geomagnético aos pólos e, quando colidiam com a alta atmosfera, estimulavam os átomos de oxigênio e nitrogênio. As auroras são causadas pela interação de partículas de alta energia, principalmente elétrons, com os átomos neutros da alta atmosfera da Terra. Estas partículas de alta energia podem excitar, através de colisões, os elétrons de valença que estão ligados aos átomos neutros. Estes elétrons excitados então se desexcitam, retornando ao estado inicial, de mais baixa energia. Aos se desexcitar, eles emitem um fóton, isto é luz. A combinação destes fótons, emitidos por muitos átomos, resulta na aurora que vemos. As auroras acontecem a alturas acima de 60 km, têm correntes acima de 100 000 volts e geram energia acima de 1 milhão de megawatts.
aurora equador magnetico 
Foto da Terra tirada por um satélite. O anel claro em volta do pólo é uma aurora. À esquerda, no mapa mundi, a linha preta representa o equador magnético e o ponto claro o pólo norte magnético.
Uma das primeiras evidências dos efeitos das atividades solares na Terra foi a interrupção dos telégrafos ocorrida em 1859 devido a uma forte fulguração solar observada pelo astrônomo inglês Richard Christopher Carrington (1826-1875).
As ejeções coronais de massa viajam a aproximadamente 1 milhão km/hr e levam de um a quatro dias para alcançar a Terra. Quando atingem a Terra, têm milhões de quilômetros de extensão e podem causar:
  • danos a satélites, também causados pelo aumento da fricção causada pela expansão da atmosfera,
  • erro no posicionamento de navios e aviões de vários quilômetros, tanto pelo sistema GPS (Global Positioning System) quanto pelos sistemas Loran e Omega (8 transmisores distribuídos pela Terra), por instabilidades no plasma da ionosfera terrestre, causando cintilação na amplitude e fase do sinal e reduzindo o número de satélites disponíveis de 8 a 10 para até 4. Em geral estas instabilidades duram menos de 10 minutos, mas já ocorreram casos em que o sistema ficou fora do ar por até 13 horas,
  • danos às redes de energia elétrica, induzindo voltagens de milhares de volts e queimando transformadores.
  • danos nas tubulações metálicas de gaseodutos, já que as correntes induzidas aumentam drasticamente a corrosão,
  • Aumentam também a incidência de radiação ionizante nas pessoas, principalmente em vôos de alta altitude, como vôos supersônicos e astronáuticos.
Para exemplificar, em 1994 os satélites de comunicação canadenses Anik E1 e E2, assim como o satélite da AT&T Telstar 1, de TV e dados e o satélite Galaxy 4, que em 1998 emudeceu 45 milhões de pagers em todo o mundo, foram todos danificados por partículas aceleradas decorrentes de tempestades solares. Cada satélite tem custo acima de 100 milhões de dólares. Em agosto de 1972 houve uma flutuação na rede elétrica de Winsconsin, nos Estados Unidos, de 2500 volts e a queima de um transformador de 230 000 volts na Columbia Britânica, no valor de 100 milhões de dólares. Uma ejeção coronal de massa também causou a queima de transformadores no Quebec em 13 de março de 1989, deixando 6 milhões de pessoas sem energia elétrica por nove horas e em algumas regiões daquela província do Canadá por até duas semanas, com um prejuízo superior a 100 milhões de dólares.
Salem
Transformador da Public Service Electric and Gas (PSE&G) na Salem Nuclear Generating Station em New Jersey, nos Estados Unidos, queimado pelas correntes elétricas geomagneticamente induzidas, causadas pela tempestade geomagnética de 13-14 de março de 1989. O custo total do dano foi US$ 20 milhões. Na frente do transformador está Peter Balma, co-autor do estudo sobre os danos ao transformador.
Outros transformadores também foram queimados em 2003. A maior causa das correntes gigantescas induzidas nas linhas de distribuição de energia elétrica é a taxa de mudança temporal no campo magnético da Terra. Em termos de radiação na Terra, a radiação que atinge a Terra normalmente é de 360 milirem/ano (3,6 mili sievert/ano). Para os astronautas na Estação Espacial, atinge em média 6 rem/ano (60 mili sievert/ano), mas em único evento em 1989 atingiu 216 milirem/dia (2,16 mili sievert/dia) após uma tempestade solar. Durante uma ejeção coronal de massa a radiação na superfície da Lua chega a 7000 rem/min (70 sievert/min), o que é fatal.
shuttle 
No Sol mínimo, a exposição é da ordem de 3,6 mSy/ano, enquanto a exposição recomendada é 1 mSy/ano. No Sol máximo, a exposição é mais que o dobro.
No sistema internacional de medidas, a dose é medida em gray (Gy=1 Joule/kg) é a quantidade de energia transferida pela radiação, eletromagnética ou corpuscular, para um objeto e 100 rad=1 Gy. Um pessoa na Terra recebe em média 450 µGy/ano de raios cósmicos. O limite de dose equivalente para a população em geral é de 0,1 rem/ano (1 mSv/ano). O limite para trabalhadores ocupacionalmente expostos é de 2 rem/ano (20 mSv/ano). (ICRP-60: International Commission on Radiological Protection, Report 60, 1991). Para passar de dose (D), medida em Gy, para exposição (E), medida em Sv, precisamos levar em conta a qualidade (Q) da radiação e o especro (N) da mesma.
E=D Q N
A qualidade Q varia de 1 para a radiação eletromagnética, 5 para prótons e até 20 para partículas α e outras carregadas de alta energia, já que o dano causado pelas partículas carregadas é muito maior do que o da radiação eletromagnética. Uma tomografia de crânio tem uma exposição recomendada de 50 mGy, e uma mamografia de 10 mGy. Os sobreviventes da bomba de Hiroshima, no Japão, tiveram uma exposição média de 230 mGy (4 Gy a 1000 metros do local da explosão). Exposições acima de 200 rems já causam danos sérios, e acima de 600 rems causam a morte em menos de 2 meses em 80% dos casos.
Existem vários satélites monitorando o clima espacial e atualmente se pode receber notificação da chegada de uma ejeção coronal de massa com 3 horas de antecedência, no endereço http://www.sec.noaa.gov. Nos anos de máximo de um ciclo solar, podem ocorrer de 2 a 60 eventos que causem danos severos às linhas de transmissão de energia. Em princípio, as linhas de transmissão dentro das cidades sofrem menos efeitos, por serem curtas. Uma ejeção coronal de massa também pode causar grandes ondas (tsunami) nas camadas externas do Sol, que podem estar relacionadas com o aquecimento da coroa.
UV
A radiação ultravioleta tem comprimentos de onda menores do que a radiação visível e é normalmente dividida em três faixas: UV-A, UV-B and UV-C. O UV-B, com comprimentos de onda entre 2800 e 3150 Å é a faixa mais perigosa que alcança a superfície da Terra. O ozônio (O3) atmosférico, além do próprio oxigênio molecular (O2) e nitrogênio, protege os seres na superfície das componentes mais danosas (energéticas) da radiação solar. Mas processos químicos na atmosfera podem romper as moléculas de ozônio. Desde 1979 tem-se detectado um buraco na camada de ozônio sobre a Antártica. A redução na camada de ozônio pode levar ao câncer de pele e cataratas nos seres vivos.
Buraco Ozonio 
300 Dobsons, o valor padrão, correspondem a uma coluna com 0,3 cm de espessura. Considera-se falta de ozônio quando a coluna tem menos de 220 Dobsons, já que este valor nunca tinha sido medido antes de 1979.

A energia do Sol

Tão logo foi conhecida a distância do Sol, em 1673, por Jean Richer (1630-1696) e Giovanni Domenico Cassini (1625-1712) que determinaram a distância (paralaxe) de Marte e com esta estimaram a unidade astronômica como 140 milhões de km (cerca de 150 milhões de km é o valor atual), foi possível determinar a sua luminosidade, que é a potência que ele produz. As medidas mostram que cada metro quadrado na Terra recebe do Sol uma potência (energia/segundo) de cerca de 1400 watts [James Watt (1736-1819)], ou seja, a potência de 14 lâmpadas de 100 watts/m2. O valor mais preciso da constante solar é 1367,5 W/m2, e varia 0,3% durante o ciclo solar de 11 anos. Multiplicando-se essa potência recebida na Terra pela área da esfera compreendida pela órbita da Terra em torno do Sol, determina-se a luminosidade do Sol em 3,9×1026 watts = 3,9×1033 ergs/s.
A constante solar varia, dependendo da época no ciclo de 11 anos, de 1364,55 a 1367,86 Watts/m2 
irradiacao
Considerando-se um comprimento de onda efetivo de 5500Å, isto corresponde a
n(fótons m-2s-1)=1366 W m-2/(hc/5500Å )= 1366 J s-1 m-2/(3,6 × 10-19 J) = 3,78×1021 fótons m-2 s-1
Essa quantidade de energia é equivalente à queima de 2×1020 galões de gasolina por minuto, ou mais de 10 milhões de vezes a produção anual de petróleo da Terra. Já no século XIX os astrônomos sabiam que essa energia não poderia ser gerada por combustão, pois a energia dessa forma poderia manter o Sol brilhando por apenas 10 mil anos. Tampouco o colapso gravitacional, fonte de energia proposta pelo físico alemão Hermann Ludwig Ferdinand von Helmholtz (1821-1894) em 1854, resultou eficiente, pois a energia gravitacional poderia suprir a luminosidade do Sol por 20 milhões de anos e evidências geológicas indicam que a Terra (e portanto o Sol) tem uma idade de 4,5 bilhões de anos.
Em 1937 Hans Albrecht Bethe (1906-2005) propôs a fonte hoje aceita para a energia do Sol: as reações termo-nucleares, na qual quatro prótons são fundidos em um núcleo de hélio, com liberação de energia. O Sol tem hidrogênio suficiente para alimentar essas reações por mais 6,5 bilhões de anos. Gradualmente, à medida que diminui a quantidade de hidrogênio, aumenta a quantidade de hélio no núcleo. O Sol transforma aproximadamente 600 milhões de toneladas de hidrogênio em hélio por segundo.
Segundo os modelos de evolução estelar, daqui a cerca de 1,1 bilhão de anos o brilho do Sol aumentará em cerca de 10%, que causará a elevação da temperatura aqui na Terra, aumentando o vapor de água na atmosfera. O problema é que o vapor de água causa o efeito estufa. Daqui a 3,5 bilhões de anos, o brilho do Sol já será cerca de 40% maior do que o atual, e o calor será tão forte que os oceanos secarão completamente, exacerbando o efeito estufa. Embora o Sol se torne uma gigante vermelha após terminar o hidrogênio no núcleo, ocorrerá perda de massa gradual do Sol, possivelmente afastando a Terra do Sol até aproximadamente a órbita de Marte, mas exposta a uma temperatura de cerca de 1600 K (1327 C).
aurora
Aurora
ACE 6 abril 2000
No dia 6 de abril de 2000 ocorreu a maior tempestade geomagnética desde 1986 até então. Outra similar ocorreu em 31 de março de 2001. As observações acima são do satélite ACE (Active Composition Explorer), lançado em 1997 e que fica no ponto L1 (a 1,5 milhões de km da Terra).
CME Flare CME 
Em 30 de outubro de 2003 ocorreu uma tempestade geomagnética de categoria máxima, que durou 24 horas, vinda de um flare que ocorreu em 28 de outubro de 2003. A ejeção coronal de massa que atingiu a Terra viajou com velocidades acima de 8 milhões km/h. Em 4 de novembro de 2003 ocorreu o maior flare solar já registrado. 
Aurora by Babak Tafreshi
Aurora por Babak Tafreshi
Texas 6 abril 2000
Aurora no McDonald Observatory, no Texas (Latitude=+30°) em 6 de abril de 2000.
VIS
Em 22 de outubro de 2001, o experimento VIS do satélite Polar da NASA imageou as auroras simétricas sobre os dois pólos da Terra.
cme9nov00
Ejeção coronal de massa ocorrida em 8 de novembro de 2000, que atingiu a Terra depois de 31 horas, ocasionando um fluxo de prótons de alta energia 100 mil vezes maior do que o normal. A imagem é feita com o coronógrafo do SOHO, que esconde o disco do Sol.

Ozônio
Ozônio 2006
Ozônio 2011

Sol3D
Imagem do Sol em estéreo, obtida pelo Projeto Stereo (Solar TErrestrial RElations Observatory), da NASA, lançado em 2006, com dois satélites idênticos, um antes da Terra em sua órbita, e outro depois da Terra.

Ejeção coronal de massa de 7 de junho de 2011
Proeminência de 29 de setembro de 2008
International Space Environment Service
Exposição à radiação UV
Fotos do buraco da camada de ozônio
Site da NASA com as medidas da camada de ozônio
Simulação de conveção (1MB mpeg)
Escalas dos eventos solares, em inglês
Site do INPE sobre exposições ao ultravioleta
Exposição Eritêmica (mapa da radiação UV na Terra)
Fontes de radiação naturais e produzidas pelo homem (em inglês)
Galileo não ficou cego por ter olhado o Sol, e sim de glaucoma quando velho. 
proxima Sol em jul 2002
proxima Distâncias
Volta Astronomia e Astrofísica 

© Kepler de Souza Oliveira Filho e Maria de Fátima Oliveira Saraiva 
Modificada em 11 out 2012

A Origem da Vida e Vida Extraterreste

vla
Somos nós as únicas criaturas no Universo que pensam sobre sua origem e evolução, ou existiriam outras formas de vida inteligente entre as estrelas?
A origem da vida e a existência de vida extraterrestre vêm sendo focalizadas nos noticiários com grande intensidade desde os anos 1950, mas de forma crescente nos últimos anos, com a possível detecção de vida microscópica em Marte, através dos possiveis restos de nanobactérias no meteorito ALH84001, e da existência de água em forma de oceanos, sob uma manta congelada, na lua Europa de Júpiter e em Marte.
Europa Interior
Qual é a origem da vida? O que diferencia seres vivos de simples matéria orgânica? No contexto de evolução cósmica, a vida resulta de uma sequência natural de evolução química e biológica da matéria pré-existente, regida pelas leis físicas. A regra fundamental é que os seres vivos são organismos que têm metabolismo, se reproduzem, sofrem mutações, e reproduzem as mutações, isto é, passam por seleção cumulativa. Já a vida inteligente requer mais de uma centena de bilhões de células, diferenciadas em um organismo altamento complexo e, portanto, a seleção natural cumulativa requer um longo tempo.
O que é o "sopro da vida"? O que diferencia seres vivos de não vivos?
6 características biológicas dos seres vivos:
  • organização em células
     
    Amoeba proteus [crédito: Think quest]
  • Metabolismo: transformações químicas à custa de energia
  • Crescimento: transformação de materiais do meio para componentes do corpo
  • Reprodução: cópias do organismo mediante transferência genética
  • Mutação: mudanças das características individuais
  • Evolução: Reprodução da mutação, capacidade de adaptaçãoA análise de meteoritos do tipo condrito carbonáceo, e a observação de moléculas orgânicas no meio interestelar, corroboram a idéia de que os compostos orgânicos podem ser sintetizados naturalmente, sem a atuação de seres vivos. Os compostos orgânicos são simplesmente moléculas com o átomo de carbono, que tem propriedade elétrica de se combinar em longas cadeias. Vários meteoritos apresentam aminoácidos de origem extraterrestre, que se formaram possivelmente por adesão molecular catalisada por grãos de silicato, da poeira interestelar. Mais de 140 moléculas já foram observadas no meio interestelar pelas suas linhas espectrais, como hidrocarbonatos aromáticos e alifáticos, alcools, ácidos, aldeidos, cetonas, aminos e éteres. Na atmosfera do satélite Titan, de Saturno, também foram encontrados vários compostos orgânicos.
    A Terra não se formou com a mesma composição do Sol, pois nela faltam os elementos leves e voláteis, incapazes de se condensar na região demasiadamente quente da nebulosa solar onde a Terra se formou, e depois os elementos leves secundários foram perdidos pelo proto-planeta porque sua massa pequena e temperatura elevada não permitiram a retenção da atmosfera. A atmosfera primitiva resultou do degasamento do interior quente e era alimentada através da intensa atividade vulcânica que perdurou por cerca de 100 milhões de anos após sua formação. Apesar da ejecção de H2O, CO2, HS2, CH4 e NH3 na atmosfera, esta não possuia oxigênio livre como hoje, que poderia destruir moléculas orgânicas. A formação de moléculas complexas requeria energia de radiação com comprimentos de onda menores que 2200Å, providos por relâmpagos e pelo próprio Sol, já que não havia ainda na Terra a camada de ozônio que bloqueia a radiação ultravioleta.
    StanleyO experimento bioquímico em laboratório de Miller-Urey, realizado em 1953 por Stanley Lloyd Miller (1930-2007) no laboratório de Harold C. Urey (1893-1981), demonstrou que, nessa atmosfera redutora, sob a ação de descargas elétricas, é possível transformar 2% do carbono em aminoácidos, a base das proteínas. No experimento de Miller-Urey, o frasco de baixo contém o "oceano" de água, que ao ser aquecido força vapor de água a circular pelo aparato. O frasco de cima contém a "atmosfera", com metano (CH4), amônia (NH3), hidrogênio (H2) e o vapor de água. Quando uma descarca elétrica (raio) passa pelos gases, eles interagem, gerando amino ácidos (glicina, alanina, ácidos aspático e glutâmico, entre outros). 15% do carbono do metano original combinaram-se em compostos orgânicos.
    Em 1959, Juan Oró, na Universidade de Houston, conseguiu produzir adenina, uma das quatro bases do ARN (RNA) e ADN (DNA), a partir de HCN e amônia em uma solução aquosa. Embora a atmosfera da Terra possa não ter sido redutora no início, vários aminoácidos já foram detectados em meteoritos, mostrando que eles podem se formar no espaço.

    Vida na Terra

    Segundo a paleontologia, fósseis microscópicos de bactéria e algas datando de 3,8 bilhões de anos são as evidências de vida mais remota na Terra. Portanto cerca de 1 bilhão de anos após a formação da Terra, a evolução molecular já havido dado origem à vida. Desde então as formas de vida sofreram muitas mutações e a evolução darwiniana selecionou as formas de vida mais adaptadas às condições climáticas da Terra, que mudaram com o tempo. A evolução do Homo Sapiens, entretanto, por sua alta complexidade, levou 3,8 bilhões de anos, pois sua existência data de 300 000 anos atrás. O Homo Sapiens Sapiens só tem 125 000 anos, e a civilização somente 10 000 anos, com o fim da última idade do gelo.
    Embora nenhuma evidência concreta de vida tenha até agora sido encontrada fora da Terra, os elementos básicos para seu desenvolvimento foram detectados no meio extra-terrestre. Por exemplo, a lua Europa pode conter vida pois reúne os elementos fundamentais: calor, água e material orgânico procedente de cometas e meteoritos.
    Na Terra foram necessários 4,5 bilhões de anos para a vida inteligente evoluir, mas somente 1 bilhão para a vida microscópica iniciar. Entretanto, a vida pode tomar formas inesperadas, evoluir em lugares imprevisíveis, e de formas improváveis, os chamados extremófilos, descobertos em 1965.
    MethanopyrusPor exemplo, aqui na Terra, se encontrou a bactéria Polaromonas vacuolata, que vive quilômetros abaixo da superfície, nos pólos, sob temperaturas dezenas de graus abaixo de zero, bactérias em uma mina de ouro da África do Sul a 3,5 km de profundidade, microorganismos que vivem dentro de rochas de granito, que se acreditava completamente estéreis pela completa falta de nutrientes, até micróbios super-resistentes, como o Methanopyrus kandleri, que vivem no interior de vulcões submarinos, em temperaturas de até 113 C. Essas bactérias se alimentam de gases, como o metano, e outros elementos químicos, como ferro, enxofre e manganês. O micróbio Pyrolobus fumarii era a forma de vida mais resistente às altas temperaturas até 2003. Os cientistas haviam registrado exemplares desses organismos vivendo a 113 graus Celsius. Derek Lovley e Kazem Kashefi, ambos da Universidade de Massachusetts, Estados Unidos, identificaram uma arqueobactéria (a forma mais primitiva de vida que se conhece) que se reproduziu em um forno a até 121 graus Celsius. O nome científico do micróbio, um hipertermófilo unicelular, ainda não foi definido, e é conhecido como Strain 121 (linhagem 121). Ele foi encontrado em um vulcão submarino no Havaí. Segundo Lovley, esses microrganismos usam ferro para produzir energia. Note que os fornos esterilizadores em geral trabalham a no máximo 121 C. E outras como as Sulfolobus acidocaldarius, acidófilos, que vivem em fontes de ácido sulfúrico. Deinococcus radiodurans é um extremófilo radio-resistente, que consegue sobriver a doses de radiação de 5 000 Grays. Uma dose de 1 Grays equivale à absorção de 1 joule por kilograma. 10 Gy são suficientes para matar um ser humano. A bactéria Herminiimonas glaciei descoberta pela equipe coordenada pela bioquímica Jennifer Loveland-Curtze (2009, International Journal of Systematic and Evolutionary Microbiololgy 59, 1272), permaneceu sob uma camada de gelo de 3 km de espessura, a 56 graus negativos por 120 mil anos e depois de onze meses a temperaturas de 2 a 5 graus positivos voltou a vida, se reproduziu e formou uma colônia.
    Em 2010, Felisa Wolfe-Simon e colaboradores do NASA Exobiology and Evolutionary Biology (Exo/Evo) Program e no NASA Astrobiology Institute divulgaram que a bactéria Gammaproteobacteria GFAJ-1, encontrada em um lago na Califórnia, da família das Halomonadaceas, e é uma extremófila halofílica capaz de substituir o fósforo (P) por arsênico (As) no seu DNA.
    Portanto, aqui na Terra, formas de vida primitiva muito diferentes existem.

    A bactéria de menor tamanho reconhecida na Terra é a Mycoplasma genitalium, com 300 nm. As possíveis nanobactérias, encontradas também dentro de seres humanos, têm diâmetro entre 30 e 150 nm, cerca de um milésimo da largura de um fio de cabelo, e menor que muitos vírus, que não se reproduzem sozinhos, mas somente através de um ser vivo. O tamanho extremamente pequeno das nanobactérias limita muito a investigação cientifica, e ainda não se conseguiu identificar DNA nelas. O microbiólogo Jack Maniloff, da Universidade de Rochester, determinou como 140 nm o tamanho mínimo para seres vivos, para ter DNA e proteínas em funcionamento.

    Vida no Sistema Solar

    A existência de vida inteligente pode ser descartada em todos os demais planetas do Sistema Solar. Em Marte, onde há água em certa abundância, atualmente em forma de vapor ou sólido, e a pressão atmosférica na superfície é 150 vezes menor do que na Terra, a morfologia da superfície indica que houve água líquida no passado. O meteorio ALH84001, proveniente de Marte, mostra depósitos minerais que ainda estão em disputa científica se são restos de nanobactérias, compostos orgânicos simples, ou contaminação ocorrida na própria Terra.
    Contaminação: a dificuldade de procurar vida extra-terrestre através de experimentos é a possibilidade de contaminação do experimento por vida aqui da Terra. Quando a missão Apolo 12 trouxe de volta umacâmara Surveyor 3 enviada anteriormente, encontrou-se uma colônia da bactéria Streptococcus mitis, que tinha contaminado a espuma de isolamento da câmara antes de ser enviada à Lua, e sobrevieu não só a viagem de ida e volta, mas os três anos que esteve lá no solo na Lua. Esta bactéria é comum e inofensiva e vive no nariz, boca e garganta dos humanos.

    Vida na Galáxia

    A inteligência, interesse sobre o que está acontecendo no Universo, é um desdobramento da vida na Terra, resultado da evolução e seleção natural. Os seres inteligentes produzem manifestações artificiais, como as ondas eletromagnéticas moduladas em amplitude (AM) ou frequência (FM) produzidas pelos terráqueos para transmitir informação (sinais com estrutura lógica). Acreditando que possíveis seres extra-terrestres inteligentes se manifestam de maneira similar, desde 1960 se usam radiotelescópios para tentar captar sinais deles. Esta busca leva a sigla SETI, do inglês Search for Extra-Terrestrial Intelligence, ou Busca de Inteligência Extra-Terrestre. Até hoje não houve nenhuma detecção, mas esta busca se baseia em emissões moduladas de rádio, que produzimos aqui na Terra somente nos ultimos 60 anos. Hoje em dias, as tramissões de dados por ondas eletromagnéticas estão sendo superadas por transporte de informação por fibras óticas, que não são perceptíveis a distâncias interestelares.
    RadioO SETI utiliza ondas de rádio para procurar sinais extraterrestres porque as ondas de rádio viajam à velocidade da luz mas não são absorvidas pelas nuvens de poeira e gás do meio interestelar. Dentro de um raio de 80 anos-luz da Terra existem cerca de 800 estrelas similares ao Sol. Podemos ver algumas destas estrelas a olho nu: α Centauri, τ Ceti, ε Eridani, 61 Cygni e ε Indi. O projeto Phoenix procura por sinais em cerca de 1000 estrelas na vizinhança solar. 

    OVNIs

    Devido às grandes distâncias interestelares, e à limitação da velocidade a velocidades menores que a velocidade da luz pela relatividade de Einstein, não é possível viajar até outras estrelas e seus possíveis planetas. O ônibus espacial da NASA viaja a aproximadamente 28 000 km/h e, portanto, levaria 168 000 anos para chegar à estrela mais próxima, que está a 4,4 anos-luz da Terra. A espaçonave mais veloz que a espécie humana já construiu até agora (Voyager da NASA) levaria 80 mil anos para chegar à estrela mais próxima.
    Mesmo com um reator de fusão nuclear, o combustível necessário para a viagem à estrela mais próxima ocupa mil navios supertanques, e levaria 900 anos. O Dr. Bernard M. Oliver (1916-1995), diretor de pesquisa e vice-presidente da Hewlett-Packard Corporation e co-diretor do projeto de procura de vida extra-terrestre Cyclops da NASA, calculou que para uma espaçonave viajar até esta estrela mais próxima a 70% da velocidade da luz, mesmo com um motor perfeito, que converte 100% do combustível em energia (nenhuma tecnologia futura pode ser melhor que isto), seriam necessários 2,6 × 1016 Joules, equivalente a toda a energia elétrica produzida em todo o mundo, a partir de todas as fontes, inclusive nuclear, durante 100 mil anos, e ainda assim, levaria 6 anos só para chegar lá. O importante sobre este cálculo é que ele não depende da tecnologia atual (eficiência de conversão de energia entre 10 e 40%), pois assume um motor perfeito, nem de quem está fazendo a viagem, mas somente das leis de conservação de energia. Esta é a principal razão que os astrônomos são tão céticos sobre as notícias que os OVNIs (Objetos Voadores Não Identificados), ou UFOs (Unidentified Flying Objects) são espaçonaves de civilizações extra-terrestres. Devido às distâncias enormes e gastos energéticos envolvidos, é muito improvável que as dezenas de OVNIs noticiados a cada ano pudessem ser visitantes de outras estrelas tão fascinados com a Terra que estão dispostos a gastar quantidades fantásticas de tempo e energia para chegar aqui. A maioria dos OVNIs, quando estudados, resultam ser fenômenos naturais, como balões, meteoros, planetas brilhantes, ou aviões militares classificados. De fato, nenhum OVNI jamais deixou evidência física que pudesse ser estudada em laboratórios para demonstrar sua origem de fora da Terra.
    Quatro espaçonaves da Terra, duas Pioneers e duas Voyagers, depois de completarem sua exploração do sistema planetário, estão deixando este sistema planetário. Entretanto, elas levarão milhões de anos para atingir os confins do Sistema Solar, onde situa-se a Nuvem de Oort. Estas quatro naves levam placas pictoriais e mensagens de audio e vídeo sobre a Terra, mas em sua velocidade atual levarão milhões de anos para chegarem perto de qualquer estrela.

    Planetas fora do Sistema Solar

    Embora desde 1992 existam evidências gravitacionais (efeito Doppler nas linhas espectrais demonstrando movimento em torno do centro de massa) da existência de mais de quatrocentos planetas fora do Sistema Solar, em várias estrelas na nossa Galáxia, é muito difícil detectar os planetas diretamente porque a estrela em volta da qual o planeta orbita é muito mais brilhante que o planeta, ofuscando-o. Estes métodos indiretos, gravitacionais, só conseguem até agora detectar grandes planetas, tipo Júpiter ou Netuno, que não podem conter vida como a conhecemos, porque têm atmosferas imensas e de altíssima pressão sobre pequenos núcleos rochosos. Planetas pequenos, como a Terra, requerem precisão muito maior do que a atingível pelas observações atuais. Como os efeitos gravitacionais só indicam a massa e a distância do planeta à estrela, não podem detectar nenhum sinal de vida.

    A equação de Drake


    A estimativa do número N de civilizações na nossa Galáxia pode ser discutida com o auxílio da equação de Drake, proposta em 1961 pelo astrônomo Frank Donald Drake, diretor do projeto SETI:Idéias básicas:
    Número de civilizações existentes na nossa Galáxia (N) = número de civilizações que podem ter surgido no tempo de vida da galáxia (vários fatores) × fraçao desse tempo que dura uma civilização (t/T)

Determinação de Distâncias Astronômicas


O método mais comum para se medir distâncias grandes, a pontos inacessíveis, é a triangulação [Tales de Mileto (c.624-546 a.C.)] - sabendo-se um dos lados de um sistema de triângulos e seus ângulos, podemos calcular todos os lados. Na figura abaixo está esquematizado, como exemplo, a maneira de medir a distância de uma árvore localizada do outro lado de um rio, sem atravessá-lo:
tree
Tomando a árvore como um dos vértices, construímos os triângulos semelhantes ABC e DEC. BC é a linha de base do triângulo grande, AB e AC são os lados, que são as direções do objeto (a árvore) vistas de cada extremidade da linha base. Logo
$\frac{AB}{BC} = \frac{DE}{EC}$
Como posso medir BC, DE e EC, posso calcular o lado AB e então, conhecer a distância da árvore.
Vemos que a direção da árvore, vista de B, é diferente da direção da árvore vista de C. Esse deslocamento aparente na direção do objeto observado devido à mudança de posição do observador chama-se paralaxe (do grego paralaxis, mudança). Este é o princípio da visão esteoroscópica do olho humano, que calcula a distância aos objetos pela diferença de ângulo vista pelos dois olhos. Quanto mais distante está o objeto, menor é a paralaxe. Um aparelho profissional de medir ângulos é o teodolito.
mparalaxe
p
Suponha que o ponto O seja o objeto cuja distância eu quero medir (a árvore do exemplo anterior). 2D é a linha de base do triângulo, e os ângulos tex2html_wrap_inline136 e tex2html_wrap_inline138 são os ângulos entre a direção do objeto visto de cada extremidade da linha base e a direção de um objeto muito mais distante, tomado como referência (pode ser uma montanha no horizonte, no exemplo anterior).
Pela trigonometria, sabemos que
\tan {p} = \frac{D}{d}
Como p é conhecido (tex2html_wrap_inline144), e D também é conhecido, podemos medir a distância d. Para ângulos pequenos, a tangente do ângulo é aproximadamente igual ao próprio ângulo medido em radianos. Setex2html_wrap_inline150.
Então:
d = \frac{D}{p(rad)}
Como p é medido em radianos, d terá a mesma unidade de D.
Para um triângulo de base D, altura d, diagonal B,
triangulo
medimos o ângulo p entre B e d, 
\tan p = a/h \arrow h = a/\tan p \simeq a/p(rad)
para ângulos p menores que 4 graus.
Transformação de graus em radianos
Em radianos, um ângulo é medido pelo arco que ele encerra, dividido pelo raio. Na figura abaixo, o arco de circunferência a corresponde ao ângulo tex2html_wrap_inline162. Logo o valor de tex2html_wrap_inline162 em radianos é
\alpha(rad)=a/r
Arc
O valor, em graus, de 1 radiano, será:
1rad = \frac{360^{\circ}}{2\pi} = 57,29^{\circ}
\alpha(graus)=\alpha(radianos)\frac{180^o}{\pi}
Paralaxe geocêntrica e heliocêntrica
O mesmo método de triangulação explicado acima é usado para medir a distâncias de objetos astronômicos. Mas como esses objetos estão muito distantes, é necessário escolher uma linha de base muito grande. Para medir a distância da Lua ou dos planetas mais próximos, por exemplo, pode-se usar o diâmetro da Terra como linha de base. Para se medir a distância de estrelas próximas, usa-se o diâmetro da órbita da Terra como linha de base.
Paralaxe
Paralaxe geocêntrica
Atualmente a determinação de distâncias de planetas é feita por radar, e não mais por triangulação, mas antes da invenção do radar os astrônomos mediam as distâncias da Lua e de alguns planetas usando o diâmetro da Terra como linha de base. A figura abaixo ilustra o problema para a determinação da distância da Lua.
lua Lua 
PoA Paris 
Se pudéssemos ver a Lua simultaneamente em 25 de abril de 2007, de Porto Alegre (esquerda) e de Paris (direita), a veríamos em posição diferente em relação às estrelas.
A posição da Lua em relação às estrelas distantes é medida duas vezes, em posições opostas na Terra, e a paralaxe corresponde à metade da variação total na direção observada dos dois lados opostos da Terra. Essa paralaxe é chamada paralaxe geocêntrica, e é expressa por:

displaymath168
para p sendo a paralaxe geoccêntrica. 
Paralaxe heliocêntrica
sol
A paralaxe heliocêntrica é usada para medir a distância das estrelas mais próximas. À medida que a Terra gira em torno do Sol, podemos medir a direção de uma estrela em relação às estrelas de fundo quando a Terra está de um lado do Sol, e tornamos a fazer a medida seis meses mais tarde, quando a Terra está do outro lado do Sol. A metade do desvio total na posição da estrela corresponde à paralaxe heliocêntrica, que é expressa por:

displaymath86
para p sendo a paralaxe heliocêntrica.
A unidade astronômica 
Cayenne e Paris
MarteA primeira estimativa correta do valor da Unidade Astronômica ocorreu entre 5 de setembro e 1o de outubro de 1672, quando o planeta Marte, com magnitude=-2,3, estava muito próximo da estrela brilhante ψ2 Aquarii de magnitude=4, e próximo da oposição de Marte, portanto próximo do perigeu.
Com as observações simultâneas de Jean Richer (1630-1696) em Cayenne, na Guiana Francesa, Jean Picard (1620-1682) e Olaus Rømer (1644-1710) em Paris, Giovanni Domenico Cassini (1625-1712) estimou a paralaxe de Marte como 15" entre Cayenne e Paris (7200 km de distância, 25" total, 2RTerra) e, considerando que Marte está a 1,52 UA do Sol, estimou o valor da UA como 140 milhões de km. O valor correto é de 149,597870691 milhões de km. Para comparação, o olho humano só consegue detectar ângulos maiores que cerca de 2'=2×60".
A técnica mais precisa para determinar o comprimento da unidade astronômica é por radar. No entanto, a determinação não pode ser feita diretamente, pois se um sinal de rádio fosse emitido diretamente ao Sol, seu eco ficaria perdido no meio de todos os sinais de rádio que o Sol emite. Portanto se usa uma medida indireta. Por exemplo: 
Suponha que um sinal de radar é enviado a Marte, quando este planeta está em oposição, sendo encontrado que sua distância à Terra é 78 389 294 Km. A distância média de Marte ao Sol é determinada pela terceira lei de Kepler como sendo de 1,52 UA. A distância entre Terra e Marte, para Marte em oposição, é portanto 0,52 UA. Então
displaymath170
A distância de qualquer objeto, com paralaxe helicêntrica p, calculada em unidades astronômicas, é dada por:
displaymath172
proximo
longe
Quanto mais distante o objeto, menor a paralaxe.
O ano-luz
O ano-luz (AL) é a distância percorrida pela luz em um ano. Essa distância equivale a:
$1 AL =$velocidade da luz$\times 1 ano = 2,9979 \times 10^5 km/s \times 3,1557 \times 10^7 s$
$1 AL=9,46 \times 10^{12} km$
A determinação da velocidade da luz foi feita pela primeira vez em 1675, pelo astrônomo dinamarquês Olaus Rømer (1644 - 1710), medindo o intervalo entre sucessivos eclipse da lua Io, de Júpiter (P=1,769138d), para diferentes pontos da órbita da Terra.
jupiter

O intervalo de tempo entre os sucessivos eclipses é o período de revolução do satélite, que pode ser calculado pela 3a Lei de Kepler. Rømer verificou que os eclipses ficavam atrasados quando Júpiter estava mais distante da Terra, e adiantados quando Júpiter estava mais próximo da Terra. O atraso total quando a Terra ia de tex2html_wrap_inline60 para tex2html_wrap_inline62 era de 1000 segundos. Rømer atribuiu o efeito ao tempo que a luz levava para ir de um ponto da órbita da Terra ao outro, isto é, do tempo que a luz levava para atravessar a diferença da distância entre o satélite e a Terra.
Para ficar mais claro, vamos considerar que tex2html_wrap_inline64 é a hora em que ocorre o eclipse quando a Terra está na posição tex2html_wrap_inline60. Como a luz tem velocidade finita, o eclipse só será visto na Terra num tempo posterior, dado por: 
displaymath52
onde c é a velocidade da luz, e tex2html_wrap_inline70 é a distância entre a Terra e Júpiter na posição tex2html_wrap_inline60.
Após um tempo tex2html_wrap_inline74, a Terra estará na posição tex2html_wrap_inline62, e vamos chamar de tex2html_wrap_inline78 a hora prevista para acontecer o eclipse. Mas na Terra, o eclipse só será observado em: 
displaymath53
Logo, o intervalo de tempo observado entre os eclipses, tex2html_wrap_inline80, é maior do que o intervalo de tempo real entre os eclipses, tex2html_wrap_inline82. A diferença vai ser: 
displaymath54
Se esta diferença é de 1000 s, então: 
displaymath55

Como a melhor estimativa para o eixo maior da órbita da Terra era 241 500 000 Km, Rømer deduziu a velocidade da luz como sendo

displaymath88
A distância da Terra ao Sol foi medida em 1672, medindo-se a paralaxe de Marte em oposição, e sabendo-se que a distância a Marte é de 1,52 UA, como derivado por Copérnico. Hoje sabemos que o eixo maior da órbita da Terra é 2UA=299 795 786 Km, então a velocidade da luz é:
c=\frac{299795786  km}{1000 s} = 299795,796 km/s \simeq 300000 km/s
Se um avião pudesse viajar à velocidade da luz, ele daria 7 voltas completas em torno do equador da Terra em 1 segundo.
O Parsec (PARalaxe 1 SECond)
1 Parsec é a distância de um objeto tal que, um observador nesse objeto veria o raio da órbita da Terra com um tamanho angular de tex2html_wrap_inline186, ou em outras palavras, é a distância de um objeto que apresenta paralaxe heliocêntrica de tex2html_wrap_inline186.
Como a distância em unidades astronômicas, corresponde a

displaymath172
e um ângulo de tex2html_wrap_inline186, expresso em radianos, vale

displaymath91
Logo:

pc
Embora proposta na antiguidade, a primeira medida exitosa de uma paralaxe estelar foi feita por Friedrich Wilhelm Bessel (1784-1846) em 1838, para a estrela 61 Cygni (p~0,3"). A distância de um objeto, expressa em parsecs, é dada por:
parsec
Um parsec, portanto, é igual a 206 265 UA=3,26 anos-luz=3,086 × 1013 km
paralaxe
Resumindo as três unidades, para uma estrela com paralaxe heliocêntrica qualquer, sua distância será:
d(UA)=\frac{1}{p(radianos)}
parsec
d (anos-luz) = \frac{3,26}{p (^{\prime\prime})}
A estrela mais próxima da Terra, Próxima Centauri, está a uma distância de 4,3 AL, que é maior do que 1 pc (1,32 pc). Logo mesmo para a estrela mais próxima a paralaxe é menor do que 1tex2html_wrap_inline192 (na verdade é 0,7687±0,0003′′ (G. Fritz Benedict et al. Astronomical Journal, 118, 1086).
HipparcoAté poucos anos, com os telescópios disponíveis na Terra, a maior distância de estrelas que se podia medir com precisão melhor do que 10% era 20 pc, que corresponde a paralaxes tex2html_wrap_inline196. O uso de CCD e telescópios dedicados baixou a incerteza das observações na Terra para até 1 mili-segundo de arco, similar à incerteza das medidas do satélite HIPPARCOS (High-Precision Parallax Collecting Satellite), construído para medir com alta precisão a posição e a paralaxe de 120 000 estrelas. Ele foi lançado em agosto de 1989 e operou com sucesso por 3 anos, apesar de não ter alcançado a órbita geoestacionária pretendida. É importante notar que 1 mili-segundo de arco é equivalente ao tamanho angular de uma pessoa na superfície da Lua vista da Terra. Para atingir esta precisão, foi necessário corrigir pelo efeito de desvio da luz pelo Sol previsto pela relatividade geral, e que é de 1,7 segundos de arco na borda do Sol, e 4 mili-segundos de arco a 90° do Sol. Mesmo com esta precisão só é possível medir paralaxes de objetos a 1600 anos-luz de distância, cerca de 1 centésimo do tamanho da nossa Galáxia. Em 2013 a Agência Espacial Européia lançará o satélite Gaia, com precisão de 10 microsegundos de arco.
Exemplo:
EstrelaParalaxeDistância
Próxima Centauri0,772"1,295 pc4,223 a.l.
Sírius0,379"2,638 pc8,606 a.l.
Procyon0,286"3,496 pc11,404 a.l.

paralaxe
Qual estrela tem maior paralaxe? Qual sua distância em parsecs?
© Kepler de Souza Oliveira Filho & Maria de Fátima Oliveira Saraiva 
Modificada em 13 jun 2012

0 comentários:

Postar um comentário